Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research highlights how bacteria produce energy

23.05.2006
The world’s smallest life forms could be the answer to one of today’s biggest problems: providing sustainable, renewable energy for the future. Using a variety of natural food sources, bacteria can be used to create electricity, produce alternative fuels like ethanol and even boost the output of existing oil wells, according to research being presented this week at the 106th General Meeting of the (ASM) American Society for Microbiology in Orlando, Florida.

"Microbial fuel cells show promise for conversion of organic wastes and renewable biomass to electricity, but further optimization is required for most applications," says Derek Lovley of the University of Massachusetts in Amherst. Earlier this month, Lovley announced at a meeting that he and his colleagues were able to achieve a 10-fold increase in electrical output by allowing the bacteria in microbial fuel cells to grow on biofilms on the electrodes of a fuel cell.

This week, Gemma Reguera, a researcher in Lovley’s lab will present data identifying for the first time how these bacteria are able to transfer electrons through the biofilms to the electrodes.

"Cells at a distance from the anode remained viable with no decrease in the efficiency of current production as the thickness of the biofilm increased. These results are surprising because Geobacter bacteria do not produce soluble molecules or ’shuttles’ that could diffuse through the biofilm and transfer electrons from cells onto the anode," says Reguera.

She and her colleagues discovered that the bacteria produce conductive protein filaments, or pili ’nanowires,’ to transfer electrons. The finding that pili can extend the distance over which electrons can be transferred suggests additional avenues for genetically engineering the bacteria to further enhance power production.

Researchers from the Universidad Nacional Autonoma de Mexico announce that they have genetically engineered the bacterium Bacillus subtilis to directly ferment glucose sugar to ethanol with a high (86%) yield. This is the first step in a quest to develop bacteria that can breakdown and ferment cellulose biomass directly to ethanol.

"Currently ethanol is produced primarily from sugarcane or cornstarch, but much more biomass in the whole plant, including stems and leaves, can be converted to ethanol using clean technology," says Aida-Romero Garcia, one of the researchers on the study. The next step is to engineer the bacteria to produce the enzymes, known as cellulases, to break the stems and leaves down into the simple carbohydrates for fermentation.

Bacteria can not only produce alternative fuels, but could also aid in oil production by boosting output of existing wells. Michael McInerney and his colleagues at the University of Oklahoma will present research demonstrating the technical feasibility of using detergent-producing microorganisms to recover entrapped oil from oil reservoirs.

"Our approach is to use microorganisms that make detergent-like molecules (biosurfactants) to clean oil off of rock surfaces and mobilize oil stuck in small cavities. However, up till now, it is not clear whether microorganisms injected into an oil reservoir will be active and whether they will make enough biosurfactant to mobilize entrapped oil," says McInerney.

He and his colleagues were able to inoculate an oil reservoir with specific strains of bacteria and have these bacteria make biosurfactants in amounts needed for substantial oil recovery.

"We now know that the microorganisms will work as intended in the oil reservoir. The next important question is whether our approach will recover entrapped oil economically. We saw an increase in oil production after our test, but we need to measure oil production more precisely to be certain," says McInerney.

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>