Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers uncover new mechanism of tumor suppressor

Findings to be published in the journal Nature

Researchers from the University of Colorado-Denver and Health Sciences Center and Stanford University have discovered a molecular mechanism that explains how cells respond to DNA damage and other acute stresses, and if disrupted can cause cancer. Their findings, which could lead to new diagnostic markers and cancer treatments with fewer side effects, will appear in two reports in the May 21 advanced online version of the journal Nature.

The studies, led by Tatiana Kutateladze, PhD, an assistant professor in the UCDHSC Department of Pharmacology, and Or Gozani, MD, PhD, an assistant professor in the Department of Biological Sciences at Stanford University, revealed the significance of a novel function of the recently discovered tumor-suppressive molecule, which is thought to inhibit cancer formation and growth. These findings highlight a new mechanism to regulate gene expression programs that allow for appropriate responses to DNA damage in normal cells. When the process breaks down, such damage and other acute stresses are thought to lead to cancer.

The first study, Molecular mechanism of histone H3K4me3 recognition by plant homeodomain of ING2, was conducted in Kutateladze’s laboratory with the assistance of graduate student Pedro Peña and research assistant Foteini Davrazou. Other co-authors include Rui Zhao, PhD, an assistant professor in the UCDHSC Department of Biochemistry and Molecular Genetics; Or Gozani, Xiaobing Shi and Kay L. Walter from Stanford University’s Department of Biological Sciences; and Vladislav V. Verkhusha from the Department of Anatomy and Structural Biology at the Albert Einstein College of Medicine in New York.

The paper based on their work describes the structural aspects of the tumor suppressor action, while functional studies were accomplished by Gozani’s group, and are the subject of the second report that will appear in Nature titled ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression.

"Our findings have established the mechanistic principles by which the inhibitor of growth 2 tumor suppressor recognizes chromatin and regulates cell growth, proliferation, stress responses and aging. We hope this discovery opens up new opportunities to establish novel targets to prevent and treat cancer," said Kutateladze, a NARSAD Young Investigator and an American Cancer Society Research Scholar.

Research in Kutateladze’s laboratory focuses on molecular mechanisms underlying signaling and regulation by chromatin- and lipid-binding biomolecules implicated in cancer and other human diseases. She employs high field Nuclear Magnetic Resonance spectroscopy, X-ray crystallography and other biochemical and biophysical approaches to elucidate three-dimensional atomic-resolution structures and dynamics of proteins to better understand their physiological functions and relevance to diseases.

Mark Shwartz | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Molecular doorstop could be key to new tuberculosis drugs
20.03.2018 | Rockefeller University

nachricht Modified biomaterials self-assemble on temperature cues
20.03.2018 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Earlier flowering of modern winter wheat cultivars

20.03.2018 | Agricultural and Forestry Science

Smithsonian researchers name new ocean zone: The rariphotic

20.03.2018 | Life Sciences

Molecular doorstop could be key to new tuberculosis drugs

20.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>