Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers link two more genes to sudden infant death syndrome

22.05.2006
Recent discoveries at Mayo Clinic added two more cardiac genes to the list of potential links to sudden infant death syndrome (SIDS), increasing the possibility that genetic defects of the heart may cause up to 15 percent of SIDS cases. This research will be presented Friday at Heart Rhythm 2006, the 27th Annual Scientific Sessions of the Heart Rhythm Society in Boston.

In the two recent separate studies, researchers examined caveolin-3 (CAV3) and the cardiac ryanodine receptor (RyR2) and found molecular and functional evidence in both to implicate them as SIDS-susceptibility genes. Researchers examined the tissue of 135 unrelated cases of SIDS -- in infants with an average age of 3 months old -- that had been referred to Mayo Clinic’s Sudden Death Genomics Laboratory for molecular autopsy. In each study, two of the 135 cases possessed mutations in either CAV3 or RyR2.

SIDS -- the sudden, unexplained death of an infant under 1 year old -- is estimated to cause 2,500 infant deaths each year. "Combined with our previous discoveries, we now estimate that defects in genes that provide the blueprints for the critical controllers of the heart’s electrical system might have played a key role in more than 300 of those tragedies," says Michael J. Ackerman, M.D., Ph.D., principal investigator of both studies and director of Mayo Clinic’s Long QT Syndrome Clinic and Sudden Death Genomics Laboratory. "We are continuing to expose the causes of SIDS. So far, we have now added six genes to the SIDS most-wanted list."

In 2001, a team of investigators led by Dr. Ackerman identified the first cardiac gene, SCN5A, linked to SIDS. In 2005, a comprehensive search of the five channel genes that cause a potentially lethal heart rhythm syndrome known as long QT syndrome (LQTS) was found in 5 percent to 10 percent of SIDS cases.

In collaboration with Baylor College of Medicine, Mayo’s sudden death investigators chose to examine CAV3 following our recent discovery of CAV3 as a novel LQTS-causing gene. RyR2 was targeted because of its involvement in a distinct genetic heart rhythm disease known as catecholaminergic polymorphic ventricular tachycardia (CPVT).

"For a parent whose infant died suddenly and mysteriously even five years ago, we were essentially unable to provide them with a cause and would often have to tell them, ’We have no idea why your apparently healthy infant did not wake up this morning,’ " Dr. Ackerman says. "Although so much of SIDS remains unexplained, these findings that point to the heart for 10 percent to 15 percent of SIDS provide one place to search for a possible explanation. For families that have lost an infant to SIDS, it would be reasonable for parents to talk with their physician to make sure there is no family history of other unexplained deaths, unexplained fainting episodes, unexplained seizures that might provide clues and prevent more deaths."

Other researchers involved in the CAV3 study were from the University of Wisconsin-Madison and Baylor College of Medicine, Houston. Researchers involved in the RyR2 study were from Columbia University, New York.

Traci Klein | EurekAlert!
Further information:
http://www.mayo.edu
http://www.mayoclinic.com

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>