Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers link two more genes to sudden infant death syndrome

22.05.2006
Recent discoveries at Mayo Clinic added two more cardiac genes to the list of potential links to sudden infant death syndrome (SIDS), increasing the possibility that genetic defects of the heart may cause up to 15 percent of SIDS cases. This research will be presented Friday at Heart Rhythm 2006, the 27th Annual Scientific Sessions of the Heart Rhythm Society in Boston.

In the two recent separate studies, researchers examined caveolin-3 (CAV3) and the cardiac ryanodine receptor (RyR2) and found molecular and functional evidence in both to implicate them as SIDS-susceptibility genes. Researchers examined the tissue of 135 unrelated cases of SIDS -- in infants with an average age of 3 months old -- that had been referred to Mayo Clinic’s Sudden Death Genomics Laboratory for molecular autopsy. In each study, two of the 135 cases possessed mutations in either CAV3 or RyR2.

SIDS -- the sudden, unexplained death of an infant under 1 year old -- is estimated to cause 2,500 infant deaths each year. "Combined with our previous discoveries, we now estimate that defects in genes that provide the blueprints for the critical controllers of the heart’s electrical system might have played a key role in more than 300 of those tragedies," says Michael J. Ackerman, M.D., Ph.D., principal investigator of both studies and director of Mayo Clinic’s Long QT Syndrome Clinic and Sudden Death Genomics Laboratory. "We are continuing to expose the causes of SIDS. So far, we have now added six genes to the SIDS most-wanted list."

In 2001, a team of investigators led by Dr. Ackerman identified the first cardiac gene, SCN5A, linked to SIDS. In 2005, a comprehensive search of the five channel genes that cause a potentially lethal heart rhythm syndrome known as long QT syndrome (LQTS) was found in 5 percent to 10 percent of SIDS cases.

In collaboration with Baylor College of Medicine, Mayo’s sudden death investigators chose to examine CAV3 following our recent discovery of CAV3 as a novel LQTS-causing gene. RyR2 was targeted because of its involvement in a distinct genetic heart rhythm disease known as catecholaminergic polymorphic ventricular tachycardia (CPVT).

"For a parent whose infant died suddenly and mysteriously even five years ago, we were essentially unable to provide them with a cause and would often have to tell them, ’We have no idea why your apparently healthy infant did not wake up this morning,’ " Dr. Ackerman says. "Although so much of SIDS remains unexplained, these findings that point to the heart for 10 percent to 15 percent of SIDS provide one place to search for a possible explanation. For families that have lost an infant to SIDS, it would be reasonable for parents to talk with their physician to make sure there is no family history of other unexplained deaths, unexplained fainting episodes, unexplained seizures that might provide clues and prevent more deaths."

Other researchers involved in the CAV3 study were from the University of Wisconsin-Madison and Baylor College of Medicine, Houston. Researchers involved in the RyR2 study were from Columbia University, New York.

Traci Klein | EurekAlert!
Further information:
http://www.mayo.edu
http://www.mayoclinic.com

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>