Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Viral hitchhiker inhibits Wolbachia bacteria’s ability to proliferate

19.05.2006
New MBL study results may aid battle against insect-borne diseases

Scientists studying the widespread symbiotic bacteria Wolbachia have long been interested in its ability to proliferate. One way it does this is by hijacking sperm of its insect hosts and genetically tricking them to bear more infected females, the only sex that transmits the bacteria. Now, a new study from the MBL (Marine Biological Laboratory), published in the May 18 issue of PLoS Pathogens, demonstrates that a virus common to Wolbachia cells may be a key inhibitor of the cellular process that allows Wolbachia to manipulate insect reproduction.

Because Wolbachia are found in about 75 percent of the world’s insects, the discovery could impact the development of virally delivered biocontrol tools for insects that transmit pathogens to humans or harm agriculture. It might also enable the design of alternative therapies for debilitating illnesses such as river blindness and elephantiasis, whose pathologies are caused by Wolbachia bacteria living in the parasitic worms associated with these diseases.

The new research, led by Seth Bordenstein, an Assistant Scientist in the MBL’s Program in Global Infectious Diseases, shows that a virus known as WO-B interferes with Wolbachia’s ability to cause cytoplasmic incompatibility, the reproductive manipulation of its insect host.

Until now, scientists believed the virus was somehow inducing this process. But viruses pirate cells to reproduce, often killing the cells as a result. So Bordenstein and his colleagues hypothesized that by preying on Wolbachia cells, the WO-B virus might reduce the incidence of cytoplasmic incompatibility in a host, not promote it.

Using DNA analysis and electron microscopy, the scientists quantified the number of WO-B viruses and Wolbachia cells in the testes of a common host: the fruit-fly-sized jewel wasp, Nasonia vitripennis. The researchers found that the virus was indeed associated with reduced bacterial growth. Then they bred the wasps and confirmed fewer incidences of cytoplasmic incompatibility in relation to the reduced presence of the bacteria and increased presence of the virus.

"We’re excited about these findings because there is a great deal of interest in deciphering the genetic and cytological mechanisms of cytoplasmic incompatibility," says Bordenstein. "We know very little about the virus, but understanding and using it may pave the way for future strategies to control insect-borne diseases."

Andrea Early | EurekAlert!
Further information:
http://www.mbl.edu

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>