Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Viral hitchhiker inhibits Wolbachia bacteria’s ability to proliferate

19.05.2006
New MBL study results may aid battle against insect-borne diseases

Scientists studying the widespread symbiotic bacteria Wolbachia have long been interested in its ability to proliferate. One way it does this is by hijacking sperm of its insect hosts and genetically tricking them to bear more infected females, the only sex that transmits the bacteria. Now, a new study from the MBL (Marine Biological Laboratory), published in the May 18 issue of PLoS Pathogens, demonstrates that a virus common to Wolbachia cells may be a key inhibitor of the cellular process that allows Wolbachia to manipulate insect reproduction.

Because Wolbachia are found in about 75 percent of the world’s insects, the discovery could impact the development of virally delivered biocontrol tools for insects that transmit pathogens to humans or harm agriculture. It might also enable the design of alternative therapies for debilitating illnesses such as river blindness and elephantiasis, whose pathologies are caused by Wolbachia bacteria living in the parasitic worms associated with these diseases.

The new research, led by Seth Bordenstein, an Assistant Scientist in the MBL’s Program in Global Infectious Diseases, shows that a virus known as WO-B interferes with Wolbachia’s ability to cause cytoplasmic incompatibility, the reproductive manipulation of its insect host.

Until now, scientists believed the virus was somehow inducing this process. But viruses pirate cells to reproduce, often killing the cells as a result. So Bordenstein and his colleagues hypothesized that by preying on Wolbachia cells, the WO-B virus might reduce the incidence of cytoplasmic incompatibility in a host, not promote it.

Using DNA analysis and electron microscopy, the scientists quantified the number of WO-B viruses and Wolbachia cells in the testes of a common host: the fruit-fly-sized jewel wasp, Nasonia vitripennis. The researchers found that the virus was indeed associated with reduced bacterial growth. Then they bred the wasps and confirmed fewer incidences of cytoplasmic incompatibility in relation to the reduced presence of the bacteria and increased presence of the virus.

"We’re excited about these findings because there is a great deal of interest in deciphering the genetic and cytological mechanisms of cytoplasmic incompatibility," says Bordenstein. "We know very little about the virus, but understanding and using it may pave the way for future strategies to control insect-borne diseases."

Andrea Early | EurekAlert!
Further information:
http://www.mbl.edu

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>