Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Pinball protons’ created by ultraviolet rays and other causes can lead to DNA damage

19.05.2006
Researchers have known for years that damaged DNA can lead to human diseases such as cancer, but how damage occurs--and what causes it--has remained less clear.

Now, computational chemists at the University of Georgia have discovered for the first time that when a proton is knocked off one of the pairs of bases that make up DNA, a chain of damage begins that causes "lesions" in the DNA. These lesions, when replicated in the copying mechanisms of DNA, can lead to serious disorders such as cancer.

The research, just published in the Proceedings of the National Academy of Sciences (PNAS), was led by doctoral student Maria Lind and Henry F. Schaefer III, Graham-Perdue Professor of Chemistry. Other authors on the paper are doctoral student Partha Bera, postdoctoral associate Nancy Richardson and recent doctoral graduate Steven Wheeler.

Call it a "pinball proton." While chemists have shown other causes of DNA damage, the report in PNAS is the first to report how protons, knocked away by such mechanisms as radiation or chemical exposure, can cause lesions in DNA. The work was done entirely on computers in the Center for Computational Chemistry, part of the Franklin College of Arts and Sciences at UGA.

"This kind of damage in DNA subunits is about as basic as you can get," said Schaefer. "This is the simplest kind of lesion possible for such a system."

The double-helix structure of DNA has been known for more than half a century. This basic building block of life can "unzip" itself to create copies, a process at the heart of cell replication and growth. DNA is made of four "bases," Adenine, Guanine, Thymine and Cytosine, and each one pairs with its opposite to form bonds where the "information" of life is stored. Thus, Guanine pairs with Cytosine, and Thymine with Adenine.

The team at the University of Georgia studied how the removal of a proton from the Guanine-Cytosine (G-C) base pair is involved in creating lesions that can lead to replication errors. This pair has 10 protons, meaning there are numerous targets for processes that knock the protons off.

The lesions are breaks in the hydrogen bonds, of which there are two in the G-C base pair. (The Adenine-Thymine pair has three hydrogen bonds.)

"Our real goal is to examine all possible lesions in DNA subunits," said Lind.

The team discovered that the base pair minus its knocked-off proton can either break entirely or change its bonding angle--something that also causes improper replication.

"The C-G subunit is usually totally planar [flat]," said Lind. "If it twists, it could simply pull apart."

Though it has already been suspected that lesions in DNA caused by both high- and low-energy electrons result in cancer cell formation, the new study is the first evidence that protons do the same thing.

The study in PNAS also has other implications. Researchers are beginning to understand how DNA can be used as "molecular wire" in constructing electrical circuits. Such a breakthrough would allow small electronic devices to shrink even further, but how the electrical properties of DNA would work in such a context is not yet understood. The UGA research adds important knowledge about how so-called "deprotonated" DNA base pairs work and could be important in creating "DNA wire."

Kim Carlyle | EurekAlert!
Further information:
http://www.uga.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>