Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Is there a risk of transmitting genetic disorders to babies conceived through fertility procedures?

19.05.2006
As medical technology continues to advance, fertility procedures such as in-vitro fertilization and donor insemination are becoming more commonplace. However, a study in the May issue of The Journal of Pediatrics warns that, even after thorough screenings of sperm donors, genetic disorders can be transmitted to the conceived children.

Laurence Boxer, MD, and colleagues from the University of Michigan and the Severe Chronic Neutropenia International Registry investigated the cases of five children conceived by in-vitro fertilization or donor insemination who had severe congenital neutropenia (SCN)—a genetic disorder characterized by abnormally low levels of certain white blood cells in the body. Because these white blood cells help fight bacterial infections by destroying invading bacteria, people with SCN are more susceptible to recurring infections and are at greater risk for developing leukemia.

The study results showed that the same sperm donor was used for all five pregnancies. After conducting advanced genetic testing, the authors established that the donor was the carrier of the gene, not the mothers. The sperm bank was informed of this evidence, and all remaining samples were discarded.

The authors conclude that, because it is presently difficult to screen for all conceivable genetic disorders, it is imperative that potential mothers be properly counseled and informed prior to the procedures. “The mothers need to be prepared that there is always an inherent risk of a genetic disorder being transmitted by the donor’s sperm,” says Dr. Boxer.

The study is reported in “Strong evidence for autosomal dominant inheritance of severe congenital neutropenia associated with ELA2 mutations” by Laurence A. Boxer, MD, Steven Stein, B.A., Danielle Buckley, PhD, Audrey Anna Bolyard, RN, and David C. Dale, M.D. The article appears in The Journal of Pediatrics, Volume 148, Number 5 (May 2006), published by Elsevier.

Terri Stridsberg | alfa
Further information:
http://www.elsevier.com

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>