Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Broccoli, cauliflower and genetic cancer

Sulforaphane shown to inhibit the occurrence of hereditary colon cancer

Need another reason to eat vegetables? A new study at Rutgers shows that certain vegetables – broccoli and cauliflower, in particular – have natural ingredients that may reduce the risk of developing hereditary cancers.

A research team led by Rutgers’ Ah-Ng Tony Kong has revealed that these widely consumed cruciferous vegetables – so called because their four-petal flowers resemble crosses – are abundant in sulforaphane (SFN). This compound had previously been shown to inhibit some cancers in rodents induced by carcinogens – substances or agents external to the body. Kong’s investigations, however, focused on whether SFN might inhibit the occurrence of hereditary cancers – those arising from one’s genetic makeup.

The American Cancer Society estimates that more than two-thirds of cancer may be prevented through lifestyle modification, and nearly one-third of these cancer occurrences can be attributed to diet alone.

"Our research has substantiated the connection between diet and cancer prevention, and it is now clear that the expression of cancer-related genes can be influenced by chemopreventive compounds in the things we eat," said Kong, a professor of pharmaceutics in the Ernest Mario School of Pharmacy at Rutgers, The State University of New Jersey.

Chemopreventive properties are those that prevent, stop or reverse the development of cancer. In a study published online in the journal Carcinogenesis, Kong and his colleagues used a mouse model for human colon cancer to demonstrate the chemopreventive power of SFN and explain how it works to thwart cancer at the biomolecular level.

The researchers employed a specially bred strain of mice (labeled Apc/Min/+) that carry a mutation that switches off a gene (Apc) that suppresses tumors. This is the same gene known to be directly implicated in the development of most colon cancers in humans. When the gene is inactivated in the mice, polyps, which lead to tumors, appear spontaneously in the small intestine. Experiments using these mice can help in designing human clinical trials that can lead to new treatments for colon cancer in humans.

Two groups of mice were fed diets supplemented with SFN for three weeks, one group receiving 300 parts per million (ppm) of SFN and the other getting 600 ppm. "Our results clearly demonstrated that those mice fed with an SFN-supplemented diet developed significantly fewer and smaller tumors," Kong said.

After the three weeks, the average number of polyps in the small intestine in each mouse decreased more than 25 percent in those on the 300 ppm diet and 47 percent in the 600 ppm treatment group, as compared to control animals who had received no SFN.

"Our results showed that SFN produced its cancer preventive effects in the mice by inducing apoptosis (programmed cell death) and inhibiting proliferation of the tumors; however, it was not clear what mechanism SFN employs to accomplish this," Kong said.

Using biomarkers (indicator molecules) associated with apoptosis and proliferation, Kong’s team found that SFN suppressed certain enzymes or kinases that are highly expressed both in the mice and in patients with colon cancer. The researchers concluded that this enzymatic suppression activity is the likely basis for the chemopreventive effects of SFN.

"Our study corroborates the notion that SFN has chemopreventive activity. Based on these findings, we feel SFN should be evaluated clinically for its chemopreventive potential in human patients with Apc related colon cancers," Kong said.

Joseph Blumberg | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Enormous dome in central Andes driven by huge magma body beneath it

25.10.2016 | Earth Sciences

First time-lapse footage of cell activity during limb regeneration

25.10.2016 | Life Sciences

Deep down fracking wells, microbial communities thrive

25.10.2016 | Earth Sciences

More VideoLinks >>>