Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Packard scientists announce first international gene search for typical ALS

18.05.2006
Million dollar study is an international collaboration supported by government, top ALS organizations

Though it’s the more common form of the disease, sporadic ALS, which affects roughly 90 percent of those living with the fatal neurodegenerative illness, has been the one less studied, simply because, unlike familial ALS, no genes have turned up.

This week, however Bryan Traynor, M.D. and John Hardy, Ph.D., scientist-grantees with the Packard Center for ALS Research at Johns Hopkins, are beginning the first in-depth screening for genes that underlie the "spontaneous" illness, which, like all ALS, destroys the motor neurons that enable movement, including breathing.

Hardy and Traynor are researchers in the National Institute on Aging’s Laboratory of Neurogenetics in Bethesda, Maryland. Traynor also is a faculty member with the Johns Hopkins School of Medicine.

"In the forest of exciting research that’s going on in ALS," says Packard Director, Jeffrey Rothstein, "this is a tall tree. We’ve been waiting some time for this one."

If all goes well, Traynor says, the work will clarify the role of genes - or lack of it - in sporadic ALS. "That role," he adds, "has long been uncertain. We don’t know, for example, if sALS is triggered by a handful of interacting genes or genes plus environment or environment alone. The study aims to clarify that."

The results could strongly shape the search for a cure.

Supported by The Packard Center, the ALS Association and the National Institute for Neurological Disease and Stroke, the investigation stands out for several reasons: it’s large enough for trustworthy results, involving close to 1,200 ALS patients and healthy controls. It brings in international scope: half of the study focuses on Italian populations. But most important, its razor-sharp technology - a high-throughput variety that uses robotics and just-available gene finder chips - mines each patient’s DNA for information with a speed and accuracy not possible even a year ago. The research should be completed and data interpreted, the scientists say, early next year.

As a plus for ALS researchers worldwide, the raw DNA-based data from the study will quickly be made available online. Scientists expanding the study can add their data, improving accuracy of future research.

Why hasn’t such a study gone on before? "Simply put, the technology wasn’t available," Traynor explains. The research - known scientifically as a high-resolution genome-wide association study - relies upon spotting unusual patterns in patients’ DNA (they’re associated with having the disease) that healthy controls don’t have or have far less frequently.

The patterns are sets of small variations in the order of the several billion bases that make up human DNA. Everyone has variations, known as single nucleotide polymorphisms, or SNPs (snips). Snips are useful because they can serve as signposts for the real quarry - disease-related genes. They’re something like having a few different-colored beads on an otherwise-white necklace. If, say, the red bead always shows up in ALS patients, that’s meaningful.

Fortunately, the Human Genome Project identified large numbers of SNPs. And last year, the completed HapMap project helped scientists pick out which are most revealing, i.e. those more likely to be near a gene-bearing stretch of DNA.

In the ALS study, the research team will search the genomes of 276 American sporadic ALS patients, testing them and a like number of controls for some 400,000 SNPs - a fair guarantee that no stretch of DNA will go unnoticed. As a check, the study includes DNA from 276 Italian patients and controls from a DNA bio-bank in Turin, Italy.

Under the logic that the signposts in patients’ DNA associate physically near a sporadic ALS-related gene or genes, the study should make finding those genes far easier. "My gut feeling," Traynor says, "is that we’ll find several tied to the disease."

"But even if get no associations, that’s still a powerful result," he says. "That would suggest sporadic ALS isn’t gene-based, that we should focus instead on the environment." If that’s the case, the team is well situated. Not only is Italian collaborator Adriano Chio a noted investigator on environmental risk factors of ALS - he recently discovered that Italian soccer players had higher odds of having the illness - but the group also has an ongoing collaboration with a European consortium of ALS registries (EURALS), which actively surveys the populations of Italy, the UK and Ireland (25 million citizens) for ALS cases. To date, EURALS has collected health and lifestyle information on 900 patients and 1,700 controls.

Traynor, a genetic epidemiologist, is part of a project that’s already combing registry data for risk factors.

Marjorie Centofanti | EurekAlert!
Further information:
http://www.alscenter.org
http://www.jhmi.edu

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>