Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Packard scientists announce first international gene search for typical ALS

18.05.2006
Million dollar study is an international collaboration supported by government, top ALS organizations

Though it’s the more common form of the disease, sporadic ALS, which affects roughly 90 percent of those living with the fatal neurodegenerative illness, has been the one less studied, simply because, unlike familial ALS, no genes have turned up.

This week, however Bryan Traynor, M.D. and John Hardy, Ph.D., scientist-grantees with the Packard Center for ALS Research at Johns Hopkins, are beginning the first in-depth screening for genes that underlie the "spontaneous" illness, which, like all ALS, destroys the motor neurons that enable movement, including breathing.

Hardy and Traynor are researchers in the National Institute on Aging’s Laboratory of Neurogenetics in Bethesda, Maryland. Traynor also is a faculty member with the Johns Hopkins School of Medicine.

"In the forest of exciting research that’s going on in ALS," says Packard Director, Jeffrey Rothstein, "this is a tall tree. We’ve been waiting some time for this one."

If all goes well, Traynor says, the work will clarify the role of genes - or lack of it - in sporadic ALS. "That role," he adds, "has long been uncertain. We don’t know, for example, if sALS is triggered by a handful of interacting genes or genes plus environment or environment alone. The study aims to clarify that."

The results could strongly shape the search for a cure.

Supported by The Packard Center, the ALS Association and the National Institute for Neurological Disease and Stroke, the investigation stands out for several reasons: it’s large enough for trustworthy results, involving close to 1,200 ALS patients and healthy controls. It brings in international scope: half of the study focuses on Italian populations. But most important, its razor-sharp technology - a high-throughput variety that uses robotics and just-available gene finder chips - mines each patient’s DNA for information with a speed and accuracy not possible even a year ago. The research should be completed and data interpreted, the scientists say, early next year.

As a plus for ALS researchers worldwide, the raw DNA-based data from the study will quickly be made available online. Scientists expanding the study can add their data, improving accuracy of future research.

Why hasn’t such a study gone on before? "Simply put, the technology wasn’t available," Traynor explains. The research - known scientifically as a high-resolution genome-wide association study - relies upon spotting unusual patterns in patients’ DNA (they’re associated with having the disease) that healthy controls don’t have or have far less frequently.

The patterns are sets of small variations in the order of the several billion bases that make up human DNA. Everyone has variations, known as single nucleotide polymorphisms, or SNPs (snips). Snips are useful because they can serve as signposts for the real quarry - disease-related genes. They’re something like having a few different-colored beads on an otherwise-white necklace. If, say, the red bead always shows up in ALS patients, that’s meaningful.

Fortunately, the Human Genome Project identified large numbers of SNPs. And last year, the completed HapMap project helped scientists pick out which are most revealing, i.e. those more likely to be near a gene-bearing stretch of DNA.

In the ALS study, the research team will search the genomes of 276 American sporadic ALS patients, testing them and a like number of controls for some 400,000 SNPs - a fair guarantee that no stretch of DNA will go unnoticed. As a check, the study includes DNA from 276 Italian patients and controls from a DNA bio-bank in Turin, Italy.

Under the logic that the signposts in patients’ DNA associate physically near a sporadic ALS-related gene or genes, the study should make finding those genes far easier. "My gut feeling," Traynor says, "is that we’ll find several tied to the disease."

"But even if get no associations, that’s still a powerful result," he says. "That would suggest sporadic ALS isn’t gene-based, that we should focus instead on the environment." If that’s the case, the team is well situated. Not only is Italian collaborator Adriano Chio a noted investigator on environmental risk factors of ALS - he recently discovered that Italian soccer players had higher odds of having the illness - but the group also has an ongoing collaboration with a European consortium of ALS registries (EURALS), which actively surveys the populations of Italy, the UK and Ireland (25 million citizens) for ALS cases. To date, EURALS has collected health and lifestyle information on 900 patients and 1,700 controls.

Traynor, a genetic epidemiologist, is part of a project that’s already combing registry data for risk factors.

Marjorie Centofanti | EurekAlert!
Further information:
http://www.alscenter.org
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>