Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Packard scientists announce first international gene search for typical ALS

18.05.2006
Million dollar study is an international collaboration supported by government, top ALS organizations

Though it’s the more common form of the disease, sporadic ALS, which affects roughly 90 percent of those living with the fatal neurodegenerative illness, has been the one less studied, simply because, unlike familial ALS, no genes have turned up.

This week, however Bryan Traynor, M.D. and John Hardy, Ph.D., scientist-grantees with the Packard Center for ALS Research at Johns Hopkins, are beginning the first in-depth screening for genes that underlie the "spontaneous" illness, which, like all ALS, destroys the motor neurons that enable movement, including breathing.

Hardy and Traynor are researchers in the National Institute on Aging’s Laboratory of Neurogenetics in Bethesda, Maryland. Traynor also is a faculty member with the Johns Hopkins School of Medicine.

"In the forest of exciting research that’s going on in ALS," says Packard Director, Jeffrey Rothstein, "this is a tall tree. We’ve been waiting some time for this one."

If all goes well, Traynor says, the work will clarify the role of genes - or lack of it - in sporadic ALS. "That role," he adds, "has long been uncertain. We don’t know, for example, if sALS is triggered by a handful of interacting genes or genes plus environment or environment alone. The study aims to clarify that."

The results could strongly shape the search for a cure.

Supported by The Packard Center, the ALS Association and the National Institute for Neurological Disease and Stroke, the investigation stands out for several reasons: it’s large enough for trustworthy results, involving close to 1,200 ALS patients and healthy controls. It brings in international scope: half of the study focuses on Italian populations. But most important, its razor-sharp technology - a high-throughput variety that uses robotics and just-available gene finder chips - mines each patient’s DNA for information with a speed and accuracy not possible even a year ago. The research should be completed and data interpreted, the scientists say, early next year.

As a plus for ALS researchers worldwide, the raw DNA-based data from the study will quickly be made available online. Scientists expanding the study can add their data, improving accuracy of future research.

Why hasn’t such a study gone on before? "Simply put, the technology wasn’t available," Traynor explains. The research - known scientifically as a high-resolution genome-wide association study - relies upon spotting unusual patterns in patients’ DNA (they’re associated with having the disease) that healthy controls don’t have or have far less frequently.

The patterns are sets of small variations in the order of the several billion bases that make up human DNA. Everyone has variations, known as single nucleotide polymorphisms, or SNPs (snips). Snips are useful because they can serve as signposts for the real quarry - disease-related genes. They’re something like having a few different-colored beads on an otherwise-white necklace. If, say, the red bead always shows up in ALS patients, that’s meaningful.

Fortunately, the Human Genome Project identified large numbers of SNPs. And last year, the completed HapMap project helped scientists pick out which are most revealing, i.e. those more likely to be near a gene-bearing stretch of DNA.

In the ALS study, the research team will search the genomes of 276 American sporadic ALS patients, testing them and a like number of controls for some 400,000 SNPs - a fair guarantee that no stretch of DNA will go unnoticed. As a check, the study includes DNA from 276 Italian patients and controls from a DNA bio-bank in Turin, Italy.

Under the logic that the signposts in patients’ DNA associate physically near a sporadic ALS-related gene or genes, the study should make finding those genes far easier. "My gut feeling," Traynor says, "is that we’ll find several tied to the disease."

"But even if get no associations, that’s still a powerful result," he says. "That would suggest sporadic ALS isn’t gene-based, that we should focus instead on the environment." If that’s the case, the team is well situated. Not only is Italian collaborator Adriano Chio a noted investigator on environmental risk factors of ALS - he recently discovered that Italian soccer players had higher odds of having the illness - but the group also has an ongoing collaboration with a European consortium of ALS registries (EURALS), which actively surveys the populations of Italy, the UK and Ireland (25 million citizens) for ALS cases. To date, EURALS has collected health and lifestyle information on 900 patients and 1,700 controls.

Traynor, a genetic epidemiologist, is part of a project that’s already combing registry data for risk factors.

Marjorie Centofanti | EurekAlert!
Further information:
http://www.alscenter.org
http://www.jhmi.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>