Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene family of potential tumor inhibitors identified

18.05.2006
Proteins from a newly discovered family of genes, LRIG, function as a retardant for a protein that is important to tumor cells. It is probably this mechanism that lends the gene family its inhibiting effect on cancer tumors. This is shown in a dissertation by Jonas Nilsson at Umeå University in Sweden, to be publicly defended on May 24.

Jonas Nilsson and his associates have identified a new family of genes, the leucin-rich and immunoglobulin-like (LRIG) family. They found that the first member of the family, LRIG1, shuts down the activity of the tumor protein ErbB1. LRIG1 introduces the ErbB1 protein to the protein degradation machinery, which in turn destroys the ErbB1 protein. In patients, they have also shown that expression of LRIG proteins is associated with increased survival rates in patients with malignant brain tumors.

Apace with the growth of our knowledge of oncology, new approaches have been developed for the treatment of tumors. For instance, treatments have been devised to seek out specific targets in the cancer cell, several of which are already in clinical use. One example is the treatment of breast cancer with Herceptin.

One type of target that these selective treatments seek out are receptors on the cell surface (receptors for growth factors). They are often hyperactive in tumors, which leads to increased resistance to chemo and radiation therapy, as well as increased tumor growth and metastasizing. Therefore, the idea is to shut down, or at least slow down, these hyperactive receptors as a way of defeating the tumor. The ErbB receptors belong to a class of cell-surface receptors, and when they are overly activated, which is often the case in tumors, they are associated with poor survival rates.

In his dissertation work, Jonas Nilsson looked for a naturally occurring retardant mechanism for ErbB receptors. He worked on a banana fruit fly protein, Kekkon-1, which serves to slow down the fly’s equivalent of the ErbB receptor. A similar protein was cloned for humans and then described and named leucin-rich and immunoglobulin-like protein 1 (LRIG1). The findings showed that LRIG1 belongs to a protein family of its own, with three family members, LRIG1, LRIG2 and LRIG3. Studies of LRIG1 showed that it binds to ErbB receptors and accelerates their degradation, thus slowing down their activity. LRIG2 and LRIG3 evince great similarities to LRIG1, which indicates that they may perform similar functions in the cell, but this has not yet been demonstrated. However, studies of brain tumors showed that the expression of LRIG proteins is associated with improved survival rates in patients. Further, it was shown that the expression of LRIG3 is an independent prognostic marker in malignant brain tumors.

In summary, by way of analogies to the banana fruit fly protein Kekkon-1, Jonas Nilsson’s dissertation identifies a new family of genes, confirms his theories that it functions as a retardant of the tumor protein ErbB1, and finally shows that the expression of LRIG proteins is associated with increased survival in patients with malignant brain tumors.

Bertil Born | alfa
Further information:
http://www.umu.se
http://www.diva-portal.org/umu/theses/abstract.xsql?dbid=783

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>