Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene family of potential tumor inhibitors identified

18.05.2006
Proteins from a newly discovered family of genes, LRIG, function as a retardant for a protein that is important to tumor cells. It is probably this mechanism that lends the gene family its inhibiting effect on cancer tumors. This is shown in a dissertation by Jonas Nilsson at Umeå University in Sweden, to be publicly defended on May 24.

Jonas Nilsson and his associates have identified a new family of genes, the leucin-rich and immunoglobulin-like (LRIG) family. They found that the first member of the family, LRIG1, shuts down the activity of the tumor protein ErbB1. LRIG1 introduces the ErbB1 protein to the protein degradation machinery, which in turn destroys the ErbB1 protein. In patients, they have also shown that expression of LRIG proteins is associated with increased survival rates in patients with malignant brain tumors.

Apace with the growth of our knowledge of oncology, new approaches have been developed for the treatment of tumors. For instance, treatments have been devised to seek out specific targets in the cancer cell, several of which are already in clinical use. One example is the treatment of breast cancer with Herceptin.

One type of target that these selective treatments seek out are receptors on the cell surface (receptors for growth factors). They are often hyperactive in tumors, which leads to increased resistance to chemo and radiation therapy, as well as increased tumor growth and metastasizing. Therefore, the idea is to shut down, or at least slow down, these hyperactive receptors as a way of defeating the tumor. The ErbB receptors belong to a class of cell-surface receptors, and when they are overly activated, which is often the case in tumors, they are associated with poor survival rates.

In his dissertation work, Jonas Nilsson looked for a naturally occurring retardant mechanism for ErbB receptors. He worked on a banana fruit fly protein, Kekkon-1, which serves to slow down the fly’s equivalent of the ErbB receptor. A similar protein was cloned for humans and then described and named leucin-rich and immunoglobulin-like protein 1 (LRIG1). The findings showed that LRIG1 belongs to a protein family of its own, with three family members, LRIG1, LRIG2 and LRIG3. Studies of LRIG1 showed that it binds to ErbB receptors and accelerates their degradation, thus slowing down their activity. LRIG2 and LRIG3 evince great similarities to LRIG1, which indicates that they may perform similar functions in the cell, but this has not yet been demonstrated. However, studies of brain tumors showed that the expression of LRIG proteins is associated with improved survival rates in patients. Further, it was shown that the expression of LRIG3 is an independent prognostic marker in malignant brain tumors.

In summary, by way of analogies to the banana fruit fly protein Kekkon-1, Jonas Nilsson’s dissertation identifies a new family of genes, confirms his theories that it functions as a retardant of the tumor protein ErbB1, and finally shows that the expression of LRIG proteins is associated with increased survival in patients with malignant brain tumors.

Bertil Born | alfa
Further information:
http://www.umu.se
http://www.diva-portal.org/umu/theses/abstract.xsql?dbid=783

More articles from Life Sciences:

nachricht Protein 'spy' gains new abilities
28.04.2017 | Rice University

nachricht How Plants Form Their Sugar Transport Routes
28.04.2017 | Universität Heidelberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

How Plants Form Their Sugar Transport Routes

28.04.2017 | Life Sciences

Protein 'spy' gains new abilities

28.04.2017 | Life Sciences

Researchers unravel the social network of immune cells

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>