Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene family of potential tumor inhibitors identified

18.05.2006
Proteins from a newly discovered family of genes, LRIG, function as a retardant for a protein that is important to tumor cells. It is probably this mechanism that lends the gene family its inhibiting effect on cancer tumors. This is shown in a dissertation by Jonas Nilsson at Umeå University in Sweden, to be publicly defended on May 24.

Jonas Nilsson and his associates have identified a new family of genes, the leucin-rich and immunoglobulin-like (LRIG) family. They found that the first member of the family, LRIG1, shuts down the activity of the tumor protein ErbB1. LRIG1 introduces the ErbB1 protein to the protein degradation machinery, which in turn destroys the ErbB1 protein. In patients, they have also shown that expression of LRIG proteins is associated with increased survival rates in patients with malignant brain tumors.

Apace with the growth of our knowledge of oncology, new approaches have been developed for the treatment of tumors. For instance, treatments have been devised to seek out specific targets in the cancer cell, several of which are already in clinical use. One example is the treatment of breast cancer with Herceptin.

One type of target that these selective treatments seek out are receptors on the cell surface (receptors for growth factors). They are often hyperactive in tumors, which leads to increased resistance to chemo and radiation therapy, as well as increased tumor growth and metastasizing. Therefore, the idea is to shut down, or at least slow down, these hyperactive receptors as a way of defeating the tumor. The ErbB receptors belong to a class of cell-surface receptors, and when they are overly activated, which is often the case in tumors, they are associated with poor survival rates.

In his dissertation work, Jonas Nilsson looked for a naturally occurring retardant mechanism for ErbB receptors. He worked on a banana fruit fly protein, Kekkon-1, which serves to slow down the fly’s equivalent of the ErbB receptor. A similar protein was cloned for humans and then described and named leucin-rich and immunoglobulin-like protein 1 (LRIG1). The findings showed that LRIG1 belongs to a protein family of its own, with three family members, LRIG1, LRIG2 and LRIG3. Studies of LRIG1 showed that it binds to ErbB receptors and accelerates their degradation, thus slowing down their activity. LRIG2 and LRIG3 evince great similarities to LRIG1, which indicates that they may perform similar functions in the cell, but this has not yet been demonstrated. However, studies of brain tumors showed that the expression of LRIG proteins is associated with improved survival rates in patients. Further, it was shown that the expression of LRIG3 is an independent prognostic marker in malignant brain tumors.

In summary, by way of analogies to the banana fruit fly protein Kekkon-1, Jonas Nilsson’s dissertation identifies a new family of genes, confirms his theories that it functions as a retardant of the tumor protein ErbB1, and finally shows that the expression of LRIG proteins is associated with increased survival in patients with malignant brain tumors.

Bertil Born | alfa
Further information:
http://www.umu.se
http://www.diva-portal.org/umu/theses/abstract.xsql?dbid=783

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>