Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Healthy human immune system cells can respond to HIV-1 – findings offer hope for vaccine against AIDS

AIDS patients’ failure to clear HIV-1 might not be due to the inability of the human immune system to recognise the virus, as was previously thought. A study published today in the open access journal Medical Immunology shows that cultured immune system cells taken from healthy individuals recognise and respond to HIV-1 proteins. Cells taken from infected individuals, however, are much less responsive to the virus.

These findings need to be reproduced in vivo, but they do offer new hope for a vaccine against AIDS. Exposing healthy individuals to HIV-1 proteins before they are infected with the virus might train their immune system to respond to the virus and prevent them from developing AIDS.

The study was conducted by Pedro Reche and Derin Keskin from the Dana-Farber Cancer Institute, Boston, USA and other colleagues from Dana-Farber and Harvard Medical School, Boston, USA. They used bioinformatics techniques to predict which HIV-1 protein fragments – or ‘epitopes’ - were likely to trigger a response from immune system cells called cytotoxic T lymphocytes. They identified 37 epitopes. Reche, Keskin et al. then predicted which of these 37 epitopes were likely to be recognised by most people’s immune systems, taking into account genetic differences in immune system genes, called HLA genes, depending on ethnic origin. They identified 25 epitopes, which they combined into five pools with which to test immune responses. They predicted that only 5 of these epitopes would be recognised by over 95% of people’s immune systems.

The authors exposed cultured lymphocytes from HIV-1 infected patients to the epitope pools, and repeated the experiment with cultured lymphocytes from healthy donors. They assessed the response to the epitopes by measuring the levels of interferon gamma (IFN gamma) produced by the cultured T lymphocytes – IFN gamma is produced by responsive T lymphocytes upon activation by pathogenic or viral proteins and helps to destroy infectious organisms.

Reche, Keskin et al.’ s results show that only a small proportion of cells from HIV-1infected patients recognised the epitopes and mounted an adequate immune response: cells from only 31-45% of patients produced IFN gamma, and in small quantities. By contrast, cells from all healthy donors responded and produced IFN gamma in large quantities. The authors also demonstrate that these exposed lymphocytes from uninfected individuals could kill HIV-1 infected cells.

Juliette Savin | alfa
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>