Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genome doesn’t start with ’G’: Study of the largest and last chromosome of the human genome published

18.05.2006
The Wellcome Trust Sanger Institute and colleagues in the UK and USA today publish the longest and final chapter in what has been called The Book of Life -- the text and study of our human genetic material. Published in Nature, the report of the sequence of human chromosome 1 is the final chromosome analysis from the Human Genome Project.

The sequence has been used to identify more than 1000 new genes and is expected to help researchers find novel diagnostics and treatments for many diseases. In the past year alone, genes involved in a dozen diseases, including cancer and neurological disease, have been identified using the freely available chromosome 1 sequence and DNA resources.

"The sequence we have generated, like that produced by our collaborators throughout the Human Genome Project, has driven biomedical discovery," said Dr Simon Gregory, Assistant Professor from Duke University, who led the project while at the Sanger Institute. "This moment, the publication of the sequence from the last and largest human chromosome, completes the story of the HGP and marks the growing wave of biological and medical research founded on the human genome sequence.

Human chromosomes are numbered from the largest (chromosome 1) to the smallest (chromosomes 22 and 21). Chromosome 1 represents around 8% of our genome and contains about twice as many genes as the average chromosome. Each chromosome is composed of many millions of genetic letters or bases, called A, C, T and G. The first genetic letter of chromosome 1 sequence, and hence the beginning of our genome, is "C".

But sequence must be mined to be of benefit: for example, differences in the sequence between individuals will help develop an understanding of diseases associated with this chromosome. Almost 4500 single-letter changes in the genetic code (called SNPs) were identified that could lead to changes in protein activity. In addition, 90 SNPs were found that would result in a shortened -- and possibly inactive -- protein. Although some 15 SNPs are associated with already known protection from malaria and predisposition to porphyria, the function of these newly located SNPs is yet to be discovered.

"A catalyst for our gene discoveries", is how Dr Brian Schutte, Associate Professor of Pediatrics at the University of Iowa, describes the sequence of chromosome 1. "We suspected a gene for a rare human orofacial clefting disease lay on chromosome 1, but had not identified it. Our collaboration with the Sanger Institute led to much more rapid discovery of the gene involved, and also helped show that this gene contributes 12% risk for the common form of cleft lip and palate.

"Our experience demonstrates that sequencing efforts accelerate gene discovery of not only rare genetic disorders, but also common diseases that place the greatest burden on our healthcare system."

As well as the fine-grain variation represented by SNPs, the team localized genes to a number of larger ’chunks’ of DNA that differed between individuals. These chunks are as large as 1 million bases. Some of the regions have been previously implicated in how we vary in our interaction with the environment around us. For example, variations in the region around the GSTM1 gene can alter our susceptibility to cancer-causing chemicals or toxins and influence the toxicity or efficacy of certain drugs.

Chromosome 1 is particularly susceptible to rearrangement and it is thought that disruption to genes within these rearrangements play a role in several cancers and in mental retardation: deletion of regions of chromosome 1 is found in 1/5000 to 1/10,000 live births. The high-quality sequence has already helped researchers around the world to home in on genes that affect a range of cancers.

"The Human Genome Project has provided us with a wealth of information about our genes and their many variations," said Dr Mark Walport, Director of the Wellcome Trust. "It is a vital resource for answering important questions about health and disease. We have been a committed partner in the project since 1992 both in supporting the research and ensuring the results are freely accessible to all.

"The completion of the project, with the publication of the Chromosome 1 sequence, is a monumental achievement that will benefit the research community for years to come and is a credit to all involved."

When seeking funding from the Wellcome Trust for their efforts to sequence the human genome in 1995, the Sanger Institute management wrote: "Sequencing is not an end in itself: it is not the solution of the genome, but merely the baseline information that allows the real aim -- the biology -- to proceed faster". The chromosome 1 project stands as a reflection of that view. Genome sequence powers research to help us understand the biology of our genome and the medical consequences of sequence variation.

Don Powell | alfa
Further information:
http://www.sanger.ac.uk/Info/Press/

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>