Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genome doesn’t start with ’G’: Study of the largest and last chromosome of the human genome published

18.05.2006
The Wellcome Trust Sanger Institute and colleagues in the UK and USA today publish the longest and final chapter in what has been called The Book of Life -- the text and study of our human genetic material. Published in Nature, the report of the sequence of human chromosome 1 is the final chromosome analysis from the Human Genome Project.

The sequence has been used to identify more than 1000 new genes and is expected to help researchers find novel diagnostics and treatments for many diseases. In the past year alone, genes involved in a dozen diseases, including cancer and neurological disease, have been identified using the freely available chromosome 1 sequence and DNA resources.

"The sequence we have generated, like that produced by our collaborators throughout the Human Genome Project, has driven biomedical discovery," said Dr Simon Gregory, Assistant Professor from Duke University, who led the project while at the Sanger Institute. "This moment, the publication of the sequence from the last and largest human chromosome, completes the story of the HGP and marks the growing wave of biological and medical research founded on the human genome sequence.

Human chromosomes are numbered from the largest (chromosome 1) to the smallest (chromosomes 22 and 21). Chromosome 1 represents around 8% of our genome and contains about twice as many genes as the average chromosome. Each chromosome is composed of many millions of genetic letters or bases, called A, C, T and G. The first genetic letter of chromosome 1 sequence, and hence the beginning of our genome, is "C".

But sequence must be mined to be of benefit: for example, differences in the sequence between individuals will help develop an understanding of diseases associated with this chromosome. Almost 4500 single-letter changes in the genetic code (called SNPs) were identified that could lead to changes in protein activity. In addition, 90 SNPs were found that would result in a shortened -- and possibly inactive -- protein. Although some 15 SNPs are associated with already known protection from malaria and predisposition to porphyria, the function of these newly located SNPs is yet to be discovered.

"A catalyst for our gene discoveries", is how Dr Brian Schutte, Associate Professor of Pediatrics at the University of Iowa, describes the sequence of chromosome 1. "We suspected a gene for a rare human orofacial clefting disease lay on chromosome 1, but had not identified it. Our collaboration with the Sanger Institute led to much more rapid discovery of the gene involved, and also helped show that this gene contributes 12% risk for the common form of cleft lip and palate.

"Our experience demonstrates that sequencing efforts accelerate gene discovery of not only rare genetic disorders, but also common diseases that place the greatest burden on our healthcare system."

As well as the fine-grain variation represented by SNPs, the team localized genes to a number of larger ’chunks’ of DNA that differed between individuals. These chunks are as large as 1 million bases. Some of the regions have been previously implicated in how we vary in our interaction with the environment around us. For example, variations in the region around the GSTM1 gene can alter our susceptibility to cancer-causing chemicals or toxins and influence the toxicity or efficacy of certain drugs.

Chromosome 1 is particularly susceptible to rearrangement and it is thought that disruption to genes within these rearrangements play a role in several cancers and in mental retardation: deletion of regions of chromosome 1 is found in 1/5000 to 1/10,000 live births. The high-quality sequence has already helped researchers around the world to home in on genes that affect a range of cancers.

"The Human Genome Project has provided us with a wealth of information about our genes and their many variations," said Dr Mark Walport, Director of the Wellcome Trust. "It is a vital resource for answering important questions about health and disease. We have been a committed partner in the project since 1992 both in supporting the research and ensuring the results are freely accessible to all.

"The completion of the project, with the publication of the Chromosome 1 sequence, is a monumental achievement that will benefit the research community for years to come and is a credit to all involved."

When seeking funding from the Wellcome Trust for their efforts to sequence the human genome in 1995, the Sanger Institute management wrote: "Sequencing is not an end in itself: it is not the solution of the genome, but merely the baseline information that allows the real aim -- the biology -- to proceed faster". The chromosome 1 project stands as a reflection of that view. Genome sequence powers research to help us understand the biology of our genome and the medical consequences of sequence variation.

Don Powell | alfa
Further information:
http://www.sanger.ac.uk/Info/Press/

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>