Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Non-coding RNAs help silence the mammalian transcription

16.05.2006
Dr. Shirley Tilghman and colleagues (Princeton University) lend new insight into the mechanism of genomic imprinting, demonstrating a necessary role for a non-coding RNA transcript in the silencing of an imprinted gene cluster in mice.

Imprinting, or the differential expression of a gene based upon which parent it has been inherited from, is integral to normal growth and development. Two human disorders, Prader-Willi and Angelman syndromes, result from the deletion of the identical portion of chromosome 15. Imprinting determines which disorder arises: When the deletion involves the chromosome 15 that came from the father, the child has Prader-Willi syndrome, but when the deletion involves the chromosome 15 that came from the mother, the child has Angelman syndrome.

In the mouse, a cluster of nine genes on the distal end of the number 7 chromosome is imprinted. Dr. Tilghman and colleagues made a series of targeted alterations to ascertain which sequences are responsible for their paternal-specific silencing. The researchers show that this imprinted gene silencing requires the elongation of a paternally-expressed non-coding RNA transcript, Kcnq1ot1.

"As we explore the mechanism of genomic imprinting in greater detail, it is becoming clear that there is not a single explanation for the silencing of all imprinted genes. Rather mammals have co-opted multiple transcriptional regulatory mechanisms that were already evolved. In the case of the Kcnqt1ot1, the mechanism utilizes some form of RNA silencing. The variation in silencing mechanisms lends further support to the argument that imprinting arose gradually over a long period in mammals, not all at once," explains Dr. Tilghman.

Heather Cosel | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

nachricht Snap, Digest, Respire
20.01.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>