Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Non-coding RNAs help silence the mammalian transcription

16.05.2006
Dr. Shirley Tilghman and colleagues (Princeton University) lend new insight into the mechanism of genomic imprinting, demonstrating a necessary role for a non-coding RNA transcript in the silencing of an imprinted gene cluster in mice.

Imprinting, or the differential expression of a gene based upon which parent it has been inherited from, is integral to normal growth and development. Two human disorders, Prader-Willi and Angelman syndromes, result from the deletion of the identical portion of chromosome 15. Imprinting determines which disorder arises: When the deletion involves the chromosome 15 that came from the father, the child has Prader-Willi syndrome, but when the deletion involves the chromosome 15 that came from the mother, the child has Angelman syndrome.

In the mouse, a cluster of nine genes on the distal end of the number 7 chromosome is imprinted. Dr. Tilghman and colleagues made a series of targeted alterations to ascertain which sequences are responsible for their paternal-specific silencing. The researchers show that this imprinted gene silencing requires the elongation of a paternally-expressed non-coding RNA transcript, Kcnq1ot1.

"As we explore the mechanism of genomic imprinting in greater detail, it is becoming clear that there is not a single explanation for the silencing of all imprinted genes. Rather mammals have co-opted multiple transcriptional regulatory mechanisms that were already evolved. In the case of the Kcnqt1ot1, the mechanism utilizes some form of RNA silencing. The variation in silencing mechanisms lends further support to the argument that imprinting arose gradually over a long period in mammals, not all at once," explains Dr. Tilghman.

Heather Cosel | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Seeing more with PET scans: New chemistry for medical imaging
27.07.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Physicists gain new insights into nanosystems with spherical confinement

27.07.2017 | Materials Sciences

Seeing more with PET scans: New chemistry for medical imaging

27.07.2017 | Life Sciences

Did you know that infrared heat and UV light contribute to the success of your barbecue?

27.07.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>