Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer is colour-blind

16.05.2006
We may look different on the outside, but inside we are all the same - so much has been scientifically proven. Research at the University of Bergen has shown that the pathways that lead to cancer are similar, no matter where you come from.

At any rate, there are remarkable genetic similarities among cancer tumours from Norway, Sudan, Sri Lanka, India, the UK and Sweden.

"We had actually expected to find a greater range of variation," says post-doctoral fellow Salah Osman Ibrahim of the University’s Department of Biomedicine. He is first author of an article that has been published in the prestigious American journal "Clinical Cancer Research". The article is the product of collaboration among several departments and units at the University of Bergen, Western Norway Regional Health Trust and a number of national and international scientists.

Found 73 genes

The researchers compared patients in Norway and Sudan with head and neck squamous cell carcinomas (HNSCC). There are wide variations in the global incidence of HNSCC, which is a form of cancer that seems to be more common in developing countries than in our art of the world. The aim of the study, therefore, was to find out whether differences in life-style, diet or ethnic background could explains these variations.

The scientists used cDNA micro-matrix studies to compare patterns of gene expression in cancerous cells and cells from healthy tissue, in order to determine which genes had been switched on or off in the tumours.

"We looked at a total of 15,000 genes in each patient," explains Ibrahim. It turned out that out of these, 136 genes are expressed differently in tumours and normal cells in Sudanese patients and 154 in Norwegian patients. Seventy-three of these genes are common to both groups.

The same pathways lead to cancer

But what may be even more important is that several of these genes are found in particular patterns that are related to cancer. The scientists talk of biological pathways: particular genes that create a particular mechanism or lead to a given alteration in the cells. Just how cells divide is an example of a biological pathway. Alterations in individual pathways of this sort may lead to cancer.

In this study, Ibrahim has found three such common pathways that occur in cancer patients in Sudan and Norway and which appear to exist independently of the patients’ background and life-style.

The results also showed that the anatomical location of HNSCC tumours in Norwegian tissue samples and the use of a type of chewing tobacco known as toombak in tissue samples from Sudan play an important role in patterns of gene expression. This was particularly the case when cancers have arisen where tissue has been in contact with chewing tobacco. There are differences from one country to another in where these tumours occur in the mouth, but these variations appear to be related to where users put the tobacco in their mouths.

Lethal chewing tobacco

"Chewing tobacco may not be so common in Norway, but it is more common in countries in which HNSCC occurs frequently," explains Ibrahim. In Sudan, the variant of snuff known as Toombak has become increasingly popular as an alternative to smoking tobacco. Toombak has a higher concentration of nitrosamines, which are well known for their carcinogenic properties.

HNSCC, which is assumed to be related to the use of toombak, is also a much more common type of cancer in Sudan than in Norway, where it accounts for only one or two percent of all cancers. In Sudan, no less than 17 percent of cancer patients have HNSCC, while in Asian countries such as India it is estimated that more than half of all cancers are HNSCC.

"The use of chewing tobacco is also very common in India," says Ibrahim, who is currently leading a new multinational study, whose preliminary results appear to support the previous findings.

Could save more lives in developing countries

Now, there is hope that the knowledge produced by the project can be used for early diagnosis and as part of the treatment process.

"Our aim is to identify biomarkers that can be used in the field, particularly in regions where access to primary health services is poor," says Ibrahim. If we can easily find out when the genes that are associated with this type of cancer are switched off or on, we can start treatment early and save more lives.

Cancers of this sort are often extremely aggressive. When they have been diagnosed it is often already too late to do anything about them," he explains.

Post-doctoral fellow Salah Osman Ibrahim of the Department of Biomedicine and his colleagues have identified 73 genes that are activated in cancerous tumours in both Sudan and Norway. Now, they are continuing the hunt in tumours from other parts of the world.

DNA micro-matrices

DNA micro-matrix studies are used to look at alterations in genetic activity under given conditions, for example after treatment with various drugs, in order to generate new knowledge of how such medications operate. One way of using the technique is to culture a particular type of cell and divide the culture into two parts. One sample is subjected to a given treatment while the other acts as a control group. After treatment, RNA is isolated from the two samples.

The treated sample is stained red, while the control sample is stained green and the two samples are mixed and placed in a DNA micro-matrix together with several thousand gene fragments, with each human gene being represented by a point on the matrix. RNA from both samples finds its way back to its own genes. When the matrix is illuminated with light emitted by a laser at a particular wavelength, the genes that have been activated by the treatment appear as points of red and those that were switched off show up as green, while genes that were not affected by the treatment will be yellow.

Salah Ibrahim | alfa
Further information:
http://www.uib.no

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>