Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer is colour-blind

16.05.2006
We may look different on the outside, but inside we are all the same - so much has been scientifically proven. Research at the University of Bergen has shown that the pathways that lead to cancer are similar, no matter where you come from.

At any rate, there are remarkable genetic similarities among cancer tumours from Norway, Sudan, Sri Lanka, India, the UK and Sweden.

"We had actually expected to find a greater range of variation," says post-doctoral fellow Salah Osman Ibrahim of the University’s Department of Biomedicine. He is first author of an article that has been published in the prestigious American journal "Clinical Cancer Research". The article is the product of collaboration among several departments and units at the University of Bergen, Western Norway Regional Health Trust and a number of national and international scientists.

Found 73 genes

The researchers compared patients in Norway and Sudan with head and neck squamous cell carcinomas (HNSCC). There are wide variations in the global incidence of HNSCC, which is a form of cancer that seems to be more common in developing countries than in our art of the world. The aim of the study, therefore, was to find out whether differences in life-style, diet or ethnic background could explains these variations.

The scientists used cDNA micro-matrix studies to compare patterns of gene expression in cancerous cells and cells from healthy tissue, in order to determine which genes had been switched on or off in the tumours.

"We looked at a total of 15,000 genes in each patient," explains Ibrahim. It turned out that out of these, 136 genes are expressed differently in tumours and normal cells in Sudanese patients and 154 in Norwegian patients. Seventy-three of these genes are common to both groups.

The same pathways lead to cancer

But what may be even more important is that several of these genes are found in particular patterns that are related to cancer. The scientists talk of biological pathways: particular genes that create a particular mechanism or lead to a given alteration in the cells. Just how cells divide is an example of a biological pathway. Alterations in individual pathways of this sort may lead to cancer.

In this study, Ibrahim has found three such common pathways that occur in cancer patients in Sudan and Norway and which appear to exist independently of the patients’ background and life-style.

The results also showed that the anatomical location of HNSCC tumours in Norwegian tissue samples and the use of a type of chewing tobacco known as toombak in tissue samples from Sudan play an important role in patterns of gene expression. This was particularly the case when cancers have arisen where tissue has been in contact with chewing tobacco. There are differences from one country to another in where these tumours occur in the mouth, but these variations appear to be related to where users put the tobacco in their mouths.

Lethal chewing tobacco

"Chewing tobacco may not be so common in Norway, but it is more common in countries in which HNSCC occurs frequently," explains Ibrahim. In Sudan, the variant of snuff known as Toombak has become increasingly popular as an alternative to smoking tobacco. Toombak has a higher concentration of nitrosamines, which are well known for their carcinogenic properties.

HNSCC, which is assumed to be related to the use of toombak, is also a much more common type of cancer in Sudan than in Norway, where it accounts for only one or two percent of all cancers. In Sudan, no less than 17 percent of cancer patients have HNSCC, while in Asian countries such as India it is estimated that more than half of all cancers are HNSCC.

"The use of chewing tobacco is also very common in India," says Ibrahim, who is currently leading a new multinational study, whose preliminary results appear to support the previous findings.

Could save more lives in developing countries

Now, there is hope that the knowledge produced by the project can be used for early diagnosis and as part of the treatment process.

"Our aim is to identify biomarkers that can be used in the field, particularly in regions where access to primary health services is poor," says Ibrahim. If we can easily find out when the genes that are associated with this type of cancer are switched off or on, we can start treatment early and save more lives.

Cancers of this sort are often extremely aggressive. When they have been diagnosed it is often already too late to do anything about them," he explains.

Post-doctoral fellow Salah Osman Ibrahim of the Department of Biomedicine and his colleagues have identified 73 genes that are activated in cancerous tumours in both Sudan and Norway. Now, they are continuing the hunt in tumours from other parts of the world.

DNA micro-matrices

DNA micro-matrix studies are used to look at alterations in genetic activity under given conditions, for example after treatment with various drugs, in order to generate new knowledge of how such medications operate. One way of using the technique is to culture a particular type of cell and divide the culture into two parts. One sample is subjected to a given treatment while the other acts as a control group. After treatment, RNA is isolated from the two samples.

The treated sample is stained red, while the control sample is stained green and the two samples are mixed and placed in a DNA micro-matrix together with several thousand gene fragments, with each human gene being represented by a point on the matrix. RNA from both samples finds its way back to its own genes. When the matrix is illuminated with light emitted by a laser at a particular wavelength, the genes that have been activated by the treatment appear as points of red and those that were switched off show up as green, while genes that were not affected by the treatment will be yellow.

Salah Ibrahim | alfa
Further information:
http://www.uib.no

More articles from Life Sciences:

nachricht Rutgers scientists discover 'Legos of life'
23.01.2018 | Rutgers University

nachricht Researchers identify a protein that keeps metastatic breast cancer cells dormant
23.01.2018 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>