Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Acidity in the brain could hold the key to stroke treatment

16.05.2006
Development of a new technique for detecting brain damage caused by stroke has been boosted up by a £1m grant to scientists at The University of Manchester. Professor Gareth Morris of the School of Chemistry and Professor Risto Kauppinen of the University of Birmingham are to lead the development of a new non-invasive technique which measures acidity (pH) in the brain.

A stroke is caused when part of the blood supply to the brain is cut off. This causes acidity in the brain to build up, leading to damage.

CT scans are currently used to detect bleeding, swelling and tumours in the brain, but the visibility of soft tissue is very limited, making damage difficult to detect.

Professors Morris and Kauppinen will use advanced Nuclear Magnetic Resonance (NMR) technologies to allow MRI scanners to create detailed images of pH in the brain.

The images will be used to compare healthy (neutral, pH 7) and damaged (acidic, lower pH) areas of the brain, and to measure how the pH of the brain changes over time, with the aim of providing more targeted and effective treatments.

Professor Morris said: “Within two to three years we hope to have developed an NMR technique which can be translated into a machine that can image acidity in the brain.

“If we can map stroke damage accurately, doctors will have a better chance to provide more targeted and effective treatment. Current techniques often only enable one to see damage once it is too late to intervene.”

NMR will be used to measure the rate at which hydrogen ions are exchanged between water and proteins in the brain. Acidity causes this rate to increase, changing the NMR signal of water.

The grant, from the Engineering and Physical Sciences Research Council, will fund three new NMR instruments in the university’s School of Chemistry, which is the second largest university Chemistry department in the UK and one of the largest in Europe. The new instruments will also support a wide range of other developments in organic, inorganic and materials chemistry.

Simon Hunter | alfa
Further information:
http://www.manchester.ac.uk

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>