Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Developmental biology : Integrin, the protein which gives cells a licence to roam

12.05.2006
CNRS researchers at the Institut Curie have shown in embryos that a cell-surface protein called ß1 integrin is essential for the formation of the enteric nervous system, which controls the passage of food through the gut.

If the cells destined to form the future enteric nervous system lack ß1 integrin, their capacity to migrate is impaired and they fail to colonize the whole intestine. This anomaly resembles Hirschsprung’s disease, a rare human congenital malformation. These findings also shed new light on how cancer becomes invasive when tumor cells acquire the ability to move around the body, giving rise to metastases. This discovery, which is reported in the May 2006 edition of Development, should enhance understanding of the development of Hirschsprung’s disease and tissue invasion in cancer.

Life’s great adventure starts when an ovum fuses with a spermatozoa to form an egg, which divides into two cells, then four, eight, and so forth, before the embryo attaches to the womb lining and develops. The embryo’s cells don’t just divide, they also specialize: some become nerve cells, others muscle or blood cells. They move around and join forces to form organs within the embryo, which progressively becomes a fetus. A “neural” tube subsequently forms throughout the length of the embryo and supplies all the cells needed to make the central nervous system, that is the brain and spinal cord, as well as the peripheral nervous system, the body’s other nerve cells.

The peripheral nervous system arises from a particular population of cells in the dorsal region of the neural tube. These so-called neural crest cells migrate through the embryo and invade the different tissues. For example, the cells that give rise to the enteric nervous system migrate towards the intestine that is being formed and colonize it by advancing to its distal end, the future rectum. It is only after they have invaded the whole intestine that the cells acquire all the special features of the enteric nervous system. In newborn babies and adults alike, these cells control the passage of food through the gut and its absorption during digestion.

Cell migration in formation of the enteric nervous system

Marie Breau in Sylvie Dufour’s group(1) is studying the formation of the enteric nervous system in mouse embryos, and particularly the role of integrins(2), the cell-surface proteins that anchor cells to their environment. Mice that do not express the gene of ß1 integrin cannot survive, so Marie Breau studied the consequences of “switching off” this gene in the neural crest cells of mouse embryos. Without ß1 integrin on their surface, the precursor cells of the future enteric nervous system fail to fully colonize the intestine and stop halfway down the colon because their ability to migrate is greatly impaired. The resulting “mutant” mice therefore lack a nervous system in the descending colon. This anomaly resembles Hirschsprung’s disease in humans, a rare congenital disorder which affects one in 5000 newborns (see Further information).

When tumor cells escape…

Colonization of the embryonic gut by cells from the neural crest has a number of points in common with the development of metastases in cancer patients. Certain cancer cells do not stop their progression after invasion of the original tissue but instead spread throughout the body. As long as the cancer cells remain where they are the tumor is localized and can be controlled by local treatment (surgery, radiotherapy), thereby curing the patient. However, if the cancer cells acquire the capacity to disseminate through the body, the tumor is considered to be metastatic and is more difficult to eradicate. The mouse model developed by the Institut Curie researchers should help us understand how metastases form, information essential to the improvement of cancer management.

Integrins, which are already known to be involved in the transformation of local tumors into invasive ones, appear to be possible targets for cancer treatments. It therefore seems doubly important to decode the mechanisms linking integrins to the process of tissue invasion.

(1) Cellular morphogenesis and tumor progression” group headed by Jean Paul Thiery – UMR 144 CNRS/Institut Curie “Subcellular structure and cellular dynamics”

(2) Integrins, which constitute a large family of proteins involved in signal transmission, control the proliferation, survival, migration and differentiation of cells.

Catherine Goupillon | alfa
Further information:
http://dev.biologists.org/
http://www.curie.fr

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Safe glide at total engine failure with ELA-inside

27.02.2017 | Information Technology

Fraunhofer IFAM expands its R&D work on Coatings for protection against corrosion and marine growth

27.02.2017 | Materials Sciences

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>