Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infamous proto-oncogene, c-myc, turns up in a new role

12.05.2006
c-myc, a gene commonly involved in cancer onset, has been found to have a role in the immune system’s normal function according to a study published in the journal, Blood.

The surprising finding, by a Swiss research team led by investigators from the Lausanne Branch of the international Ludwig Institute for Cancer Research (LICR), showed that c-myc functions in the immune system’s ‘memory’ of previous infections.

In order to rapidly and efficiently respond to new infections, the immune system evolved such that it stores a ‘memory’ of previous attack by pathogens. The specialized cells involved in this process are known as ‘T memory cells’. The T memory cells are normally maintained at a low level that can be rapidly expanded if the pathogen is detected again. The maintenance of normal, low levels, or ‘homeostasis’, of T memory cells is dependent on a signalling factor, a so-called cytokine, known as

‘IL-15’.

“Very little is known about the signalling pathways that actually control IL-15-dependent homeostasis,” explains LICR’s Dr. H. Robson MacDonald, the senior author of the study. “By analyzing genetically engineered mouse models with reduced c-myc, reduced IL-15 or absent IL-15, we discovered that it’s actually c-myc, which is known primarily as an oncogene, that acts downstream of the IL-15 signaling pathway to regulate T memory cell homeostasis.”

According to Dr. MacDonald, the study is basic research that may have implications for therapies of the future. “Understanding how immune memory works might allow us to improve therapeutic vaccines against, say, malaria or cancer. The unexpected finding is that this study is also a cautionary tale. Before we design new therapies that inactivate a gene product, which is an approach being considered for c-myc in cancer, we need to be very sure that we are not going to be also destroying a vital role in a normal process such as the body’s immune system.”

Sarah White | alfa
Further information:
http://www.licr.org

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>