Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows frogs can play key role in stem cell research

11.05.2006
It sounds like one of those curiosities which pops up in wildlife documentaries, but the African clawed frog could prove a powerful ally for scientists working in the key area of stem cell research.

Researchers at the University of Edinburgh have discovered that the distinctive species – which has become popular in recent years as a domestic pet – shares with humans the same genetic mechanism that enables embryonic stem cells to divide without limit. This process, which gives embryonic stem cells the capacity to become any of the 200 cell types in the body, is fundamental to all research in the discipline.

Until now, stem cells have been obtained from mice, primates and humans, but never from amphibians. But, because the African clawed frog is easier to study than mice and humans, the Edinburgh team anticipate that it will become an important research tool in their quest to understand and, ultimately, treat disease using stem cells. The results of their study are published in the current edition of the journal Development(*).

The key protein in humans, called Oct4, which governs the process of unlimited division of stem cells, has an equivalent in the African clawed frog, called PouV. This new research shows that the two proteins are not only similar, but perform the same function - both bind to DNA and activate certain genes that keep stem cells dividing. Indeed, embryonic stem cells lacking the Oct4 protein stop dividing and become specialised.

In the study, Dr Gillian Morrison introduced frog PouV proteins into mouse embryonic stem cells lacking Oct4 and found that the frog proteins “rescued” the stem cells – in other words, the cells recovered their ability to divide without limit. Dr Morrison obtained similar effects when she introduced PouV proteins from another amphibian, the axolotl (a type of salamander).

To find out exactly what function PouV proteins perform in frog embryos, Dr Morrison injected special compounds into very young embryos, to inactivate the native PouV proteins. These embryos continued to grow, but had defective heads and tails.

When the scientists looked closely at these embryos, they found that cells had become specialised before they were supposed to – before the embryo was ready for them. Consequently, the structures they make are severely affected.

This suggests that the PouV proteins are holding the cells in an uncommitted state, waiting for the time to come when they will decide what type of cell they are going to be. This is probably what Oct4 is doing in mouse and human embryonic stem cells.

The findings are also interesting because they highlight that the remarkable capacity of embryonic stem cells to divide without limit is at least 300 million years old. “It was very exciting, and humbling, to find that the proteins from such an ancient animal such as the frog can rescue the behaviour of ‘modern’ mouse embryonic stem cells. It told us so much about where this behaviour comes from, and how long ago,” said Dr Morrison.

Dr Josh Brickman, group leader at the Institute for Stem Cell research says, “Our results show that mammals have adopted the function of the amphibian PouV proteins to maintain their embryonic stem cells. These features of dividing without limit and giving rise to many types of cell are thus ancient features of early embryonic cells, crucial for the correct development of both frogs and humans.”

Ana Coutinho | alfa
Further information:
http://www.iscr.ed.ac.uk

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>