Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows frogs can play key role in stem cell research

11.05.2006
It sounds like one of those curiosities which pops up in wildlife documentaries, but the African clawed frog could prove a powerful ally for scientists working in the key area of stem cell research.

Researchers at the University of Edinburgh have discovered that the distinctive species – which has become popular in recent years as a domestic pet – shares with humans the same genetic mechanism that enables embryonic stem cells to divide without limit. This process, which gives embryonic stem cells the capacity to become any of the 200 cell types in the body, is fundamental to all research in the discipline.

Until now, stem cells have been obtained from mice, primates and humans, but never from amphibians. But, because the African clawed frog is easier to study than mice and humans, the Edinburgh team anticipate that it will become an important research tool in their quest to understand and, ultimately, treat disease using stem cells. The results of their study are published in the current edition of the journal Development(*).

The key protein in humans, called Oct4, which governs the process of unlimited division of stem cells, has an equivalent in the African clawed frog, called PouV. This new research shows that the two proteins are not only similar, but perform the same function - both bind to DNA and activate certain genes that keep stem cells dividing. Indeed, embryonic stem cells lacking the Oct4 protein stop dividing and become specialised.

In the study, Dr Gillian Morrison introduced frog PouV proteins into mouse embryonic stem cells lacking Oct4 and found that the frog proteins “rescued” the stem cells – in other words, the cells recovered their ability to divide without limit. Dr Morrison obtained similar effects when she introduced PouV proteins from another amphibian, the axolotl (a type of salamander).

To find out exactly what function PouV proteins perform in frog embryos, Dr Morrison injected special compounds into very young embryos, to inactivate the native PouV proteins. These embryos continued to grow, but had defective heads and tails.

When the scientists looked closely at these embryos, they found that cells had become specialised before they were supposed to – before the embryo was ready for them. Consequently, the structures they make are severely affected.

This suggests that the PouV proteins are holding the cells in an uncommitted state, waiting for the time to come when they will decide what type of cell they are going to be. This is probably what Oct4 is doing in mouse and human embryonic stem cells.

The findings are also interesting because they highlight that the remarkable capacity of embryonic stem cells to divide without limit is at least 300 million years old. “It was very exciting, and humbling, to find that the proteins from such an ancient animal such as the frog can rescue the behaviour of ‘modern’ mouse embryonic stem cells. It told us so much about where this behaviour comes from, and how long ago,” said Dr Morrison.

Dr Josh Brickman, group leader at the Institute for Stem Cell research says, “Our results show that mammals have adopted the function of the amphibian PouV proteins to maintain their embryonic stem cells. These features of dividing without limit and giving rise to many types of cell are thus ancient features of early embryonic cells, crucial for the correct development of both frogs and humans.”

Ana Coutinho | alfa
Further information:
http://www.iscr.ed.ac.uk

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>