Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows frogs can play key role in stem cell research

11.05.2006
It sounds like one of those curiosities which pops up in wildlife documentaries, but the African clawed frog could prove a powerful ally for scientists working in the key area of stem cell research.

Researchers at the University of Edinburgh have discovered that the distinctive species – which has become popular in recent years as a domestic pet – shares with humans the same genetic mechanism that enables embryonic stem cells to divide without limit. This process, which gives embryonic stem cells the capacity to become any of the 200 cell types in the body, is fundamental to all research in the discipline.

Until now, stem cells have been obtained from mice, primates and humans, but never from amphibians. But, because the African clawed frog is easier to study than mice and humans, the Edinburgh team anticipate that it will become an important research tool in their quest to understand and, ultimately, treat disease using stem cells. The results of their study are published in the current edition of the journal Development(*).

The key protein in humans, called Oct4, which governs the process of unlimited division of stem cells, has an equivalent in the African clawed frog, called PouV. This new research shows that the two proteins are not only similar, but perform the same function - both bind to DNA and activate certain genes that keep stem cells dividing. Indeed, embryonic stem cells lacking the Oct4 protein stop dividing and become specialised.

In the study, Dr Gillian Morrison introduced frog PouV proteins into mouse embryonic stem cells lacking Oct4 and found that the frog proteins “rescued” the stem cells – in other words, the cells recovered their ability to divide without limit. Dr Morrison obtained similar effects when she introduced PouV proteins from another amphibian, the axolotl (a type of salamander).

To find out exactly what function PouV proteins perform in frog embryos, Dr Morrison injected special compounds into very young embryos, to inactivate the native PouV proteins. These embryos continued to grow, but had defective heads and tails.

When the scientists looked closely at these embryos, they found that cells had become specialised before they were supposed to – before the embryo was ready for them. Consequently, the structures they make are severely affected.

This suggests that the PouV proteins are holding the cells in an uncommitted state, waiting for the time to come when they will decide what type of cell they are going to be. This is probably what Oct4 is doing in mouse and human embryonic stem cells.

The findings are also interesting because they highlight that the remarkable capacity of embryonic stem cells to divide without limit is at least 300 million years old. “It was very exciting, and humbling, to find that the proteins from such an ancient animal such as the frog can rescue the behaviour of ‘modern’ mouse embryonic stem cells. It told us so much about where this behaviour comes from, and how long ago,” said Dr Morrison.

Dr Josh Brickman, group leader at the Institute for Stem Cell research says, “Our results show that mammals have adopted the function of the amphibian PouV proteins to maintain their embryonic stem cells. These features of dividing without limit and giving rise to many types of cell are thus ancient features of early embryonic cells, crucial for the correct development of both frogs and humans.”

Ana Coutinho | alfa
Further information:
http://www.iscr.ed.ac.uk

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>