Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New treatment for specific type of leukemia

Leukemia - or cancer of the bone marrow - strikes some 700 Belgians each year. Chronic Eosinophilic Leukemia (CEL), a specific form of leukemia, is currently treated with Glivec.

However, recent research has shown that prolonged usage can cause resistance to Glivec, rendering this chronic form of leukemia untreatable. Researchers from the Flanders Interuniversity Institute for Biotechnology (VIB) connected to the Catholic University of Leuven have now discovered that another drug, Sorafenib (Nexavar), works on patients that have developed this resistance. This finding is not only important for CEL patients, but it also provides a new approach for treating specific forms of leukemia. It is clear from this research that a combination of targeted drugs provides a greater chance of lifelong effective treatment.

Chronic Eosinophilic Leukemia (CEL)
Our body’s white blood cells combat foreign intruders (such as viruses and bacteria). However, in chronic leukemia, the cells in the bone marrow that should develop into white blood cells multiply uncontrollably. These blood cells do not function properly, jeopardizing the production of normal blood cells. Among other consequences, this makes patients more susceptible to infections. Chronic leukemia appears in several forms - in CEL, a rare form of leukemia, the excessive increase of eosinophils (a certain type of white blood cell) can cause tissue damage in the heart, the skin, and the central nervous system.
The mechanism behind the cause
Under normal circumstances, our body regulates the production of white blood cells very precisely by means of a targeted activation of tyrosine kinases, which start this production. But sometimes defects in the DNA cause these tyrosine kinases to be active continuously, giving rise to diseases like leukemia. In 2003, Jan Cools and his colleagues under the direction of Peter Marynen, along with colleagues Elizabeth Stover and Gary Gilliland from Boston, discovered that CEL is caused by this kind of defective activation of the tyrosine kinase FIP1L1-PDGFRa. Now, with additional research, they have uncovered the molecular mechanism behind the abnormal activation of FIP1L1-PDGFRa. This new research is being published this week on the website of the scientific journal PNAS.
Resistance to the remedy
In the fight against CEL (and other forms of leukemia), scientists use proteins that inhibit the tyrosine kinases. Glivec is such an inhibitor and is effective against CEL because it specifically inhibits the activity of FIP1L1-PDGFRa. However, CEL patients must take Glivec every day for the rest of their lives - and recent research shows that, over time, alterations in the DNA can arise, causing resistance to Glivec. The longer Glivec is taken, the greater the chance resistance will develop. At that point, treatment with Glivec is no longer effective.
On the path to a long-lasting effective treatment
This problem prompted VIB researchers Els Lierman and Jan Cools to look for alternatives. They have found that Sorafenib, another inhibitor, works effectively in treating the resistant form of CEL. Sorafenib is already on the market in the US as a remedy for kidney tumors. This new research indicates that, to be able to treat certain forms of leukemia (like CEL) effectively over a long period of time, several inhibitors must be used, either together or successively. The scientists emphasize the importance of testing known inhibitors for their effectiveness against CEL and other forms of leukemia. This research has recently appeared in the scientific journal Blood.

Sooike Stoops | alfa
Further information:

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>