Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In undersea habitat, aquanauts learn about teamwork and task performance for the moon and Mars

10.05.2006
In isolated environments, astronauts, flight crews, offshore workers and military forces must maintain vigilance and work together to ensure a safe and successful mission.

Between daily living, telemedicine activities and moon-walking simulations, participants in the NASA Extreme Environment Mission Operations (NEEMO) 9 project helped National Space Biomedical Research Institute (NSBRI) researchers study performance ability, problem-solving and team cohesion issues that could affect long-duration space flights.

“The NEEMO undersea mission is a similar experience in key ways to what future space travelers might encounter,” said Dr. David Dinges, team leader of NSBRI’s Neurobehavioral and Psychosocial Factors Team and principal investigator on the project. “Crew members live and work together in a small space, isolated from the outside world, and must effectively perform difficult tasks at a high level of alertness, both as individuals and a team.”

Physician astronaut, Dr. Dave Williams of Canada, led the NEEMO undersea excursion in Aquarius off the Florida coast. Aquarius, the only underwater laboratory in the world, is owned and funded by the National Oceanic and Atmospheric Administration and operated by the University of North Carolina at Wilmington. Two additional astronauts, Nicole Stott and Ron Garan, and Dr. Tim Broderick, a physician at the University of Cincinnati, rounded out the crew. Jim Buckley and Ross Hein of UNCW provided undersea engineering support.

The NSBRI study used surveys, physiologic sensors, video analysis, cognitive tests, journaling and the testing of new technologies designed for isolated conditions. One such technology involved computer recognition of participants’ facial expressions, recorded on video during telemedicine activities, to inconspicuously detect levels of psychological distress. Refining behavior-monitoring technologies so that astronauts and aquanauts barely notice them is a goal of the project.

“Each experiment is minimally demanding and quick, requiring only a few minutes on most days,” Dinges said.

While the NEEMO 9 crew members practiced remote surgical techniques, worked with medical robotics and prepared for extra-vehicular activities (EVA), their interaction with each other and with NEEMO’s Mission Control was filmed and recorded. “We’re interested in seeing how they reacted to challenges, made decisions and solved problems, but the most valuable element was capturing lessons learned from every task,” said Dinges, Director of the Unit for Experimental Psychiatry at the University of Pennsylvania School of Medicine and Professor of Psychology.

Participants recorded thoughts and experiences in daily journals, highlighting what they wanted future astronauts and aquanauts to know about the technologies and protocols being tested.

“Even with extensive planning, little glitches occur with devices used in an underwater space. Part of our project asked crew members to communicate how well the procedures and technologies worked in this kind of environment,” Dinges said. “What did the aquanauts think of them? How were they using the equipment? What were their reactions to wearing certain technologies and responding to others? Were they easy to use and helpful? Their feedback is important data.”

To assess physiologic reactions to the isolated environment, crew members provided saliva samples for analysis of cortisol and stress levels and wore a sensor vest to record how their body was reacting physiologically to the experience. Another component addressed sleep and circadian rhythm disruption. Participants wore a watch-like device that recorded sleep/wake activity patterns and light exposure. A fourth component involved performing a battery of cognitive tests before and after scheduled tasks and EVAs. Data collected from each of the study’s components will be analyzed by NSBRI researchers post-mission.

The project aims to refine real-time behavior monitoring and develop models that predict how crews might perform under remote conditions. “Ultimately, the measurements in this project will provide much needed feasibility information on how effectively we can measure individual and group behavior and performance in extreme environments. From there, we can develop technology that will help maintain an astronaut’s ability to perform in space,” Dinges said.

Lauren Hammit | EurekAlert!
Further information:
http://www.bcm.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>