Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NYU algorithm enhances ability to detect cancer genes

10.05.2006
Researchers at New York University’s Courant Institute of Mathematical Sciences have developed a new algorithm that enhances the ability to detect a cancer gene, and have applied their algorithm to map the set of tumor-suppressor genes involved in lung cancer. The algorithm uses data from Affymetrix’s gene-chips that can scan hundreds of patients’ genomes to find gains and losses in gene-copies. The findings will appear in the July issue of the American Journal of Human Genetics.

The study was conducted by Iuliana Ionita, a PhD student in computer science, Raoul-Sam Daruwala, a former research scientist from Courant Bioinformatics group and currently at Google, and Courant Professor Bud Mishra. Mishra is a professor of computer science and mathematics at the Courant Institute and also has an appointment in the Department of Cell Biology at NYU’s School of Medicine.

Previous research has found that certain gene-chips--a technology that allows the genome-wide screening for mutations in genes or changes in gene expressions all at once--shed light on genes and mechanisms involved in the onset and spread of cancer. Specifically, chromosomal segments, when deleted in a single or both copies of genomes of a group of cancer patients, point to locations of tumor suppressor genes implicated in the cancer. The NYU study focused on automatic methods for reliable detection of such genes, their locations, and their boundaries. For this purpose, the NYU scientists sought to devise an efficient and novel statistical algorithm to map tumor suppressor genes using a multi-point statistical score function. Their algorithm is unique in that it exploits the high resolution of gene-chips and prior biological models through Bayesian statistics in order to optimally pinpoint the genes involved in the cancer, even when these genomes may have many other unrelated deletions, which happen as "collateral damage" to the genomes as the cancer progresses to an advanced stage.

The NYU algorithm estimates the location of tumor suppressor genes by analyzing segmental deletions in the genomes from cancer patients and the spatial relation of the deleted segments to any specific genomic interval. Since the gene-chip consists of many "probes"--each one characterizing an almost unique word and its location in the already-sequenced human genome--by combining these probe-measurements, one can estimate if an important genomic segment is missing. By analogy, this process is akin to guessing if a new edition of a book is missing an important paragraph by checking if some of the important key words in that paragraph are missing from the index of the new edition. The new algorithm computes a multipoint score for all intervals of consecutive probes, and the score reflects how well the deletion of that genomic interval may explain the cancer in these patients. In other words, the computed score measures how likely it is for a particular genomic interval to be a tumor suppressor gene implicated in the disease. In order to validate their algorithm, the authors produced a high fidelity in silico model of cancer, and checked how well they can detect the right genes, as they modified various parameters of the model in an adversarial manner. Encouraged by the success of their in silico study, they applied the algorithm to currently available patient data, and discovered that they were able to detect many genes that were already known in the literature, but also, several others that are statistically equally significant, but not found by the earlier studies.

The findings also showed that the algorithm may be applied to a wider class of problems--including the detection of oncogenes, which promote the growth of cancer when they are mutated or overexpressed. As the technology and the statistical algorithms of this nature keep improving in cost and accuracy, it will prove useful in finding good biomarkers, drug discovery, disease diagnosis, and choosing correct therapeutic intervention. The members of the NYU group (the authors, Dr. Salvatore Paxia and Dr. Thomas Anantharaman) are in the process of creating a simpler user interface for their software, providing interoperability across many different chip technologies, and finally, making it publicly available in order to facilitate its free and wide-spread usage.

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>