Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic insights may explain retinal growth, eye cancer

10.05.2006
St. Jude investigators discover role of several key genes in retina development

Investigators at St. Jude Children’s Research Hospital have discovered the role of several key genes in the development of the retina, and in the process have taken a significant step toward understanding how to prevent or cure the potentially deadly eye cancer retinoblastoma. Retinoblastoma is the third most common cancer in infants after leukemia and neuroblastoma (nerve cancer). Retinoblastoma that has spread outside the eye is among the deadliest childhood cancers, with an average survival rate of less than 10 percent.

A key finding of the new study is that humans are more susceptible to developing retinoblastoma than mice, because mice can compensate for the loss of a gene critical to normal retinal development while humans cannot. The results of the study appear in the open-access journal BMC Biology.

"Our study gives us important new information on the normal development of the retina and suggests new studies that could lead to the design of more effective drugs to treat retinoblastoma," said Michael Dyer, Ph.D., an associate member of the Department of Developmental Neurobiology at St. Jude and senior author of the paper.

The researchers discovered that during the development of the retina in mice, three genes that belong to the Rb gene family are expressed at different times. Specifically, the p107 gene is active before birth in cells that are going to become the retina. This gene ensures that the retinal cells stop multiplying at the proper time during development of this tissue. The Rb gene is expressed after birth in those cells that are actively multiplying as they also help form the retina.

In addition, the St. Jude team found that when Rb was inactivated during development of the mouse retina, the two p107 gene copies were up-regulated--made more active--therefore compensating for this loss of Rb activity. Importantly, this compensation required the presence of both p107 genes. In turn, when p107 was inactivated, Rb activity was upregulated; but unlike with p107, this compensation required only one copy of Rb.

The St. Jude team proposes that the ability of Rb and p107 to compensate for the absence of each other in mice prevents the developing retinal cells from multiplying uncontrollably and causing retinoblastoma. Also, the expression of both Rb and p130 might prevent this cancer in mice.

However, researchers learned that conditions in humans are not the same as in mice. They found that the primary Rb gene family member active in the developing human retina is RB1, and unlike in the mouse, little p107 is expressed in the developing human retina. In addition, p107 is not up-regulated to compensate for a loss of RB1 activity.

"This could explain why humans are susceptible to retinoblastoma following RB1 gene mutations, while mice require inactivation of both Rb and p107, or both Rb and p130," said Dyer.

The discovery by the St. Jude team that p107 is not expressed during development of the retina in humans suggests that it might be possible in the future to prevent retinoblastoma by "turning on" that gene, Dyer noted.

"Because the eye is visible to researchers studying retinoblastoma, it’s possible to watch a tumor grow from a single cell," said Stacy Donovan, Ph.D., a postdoctoral fellow in Dyer’s laboratory. "This could tell us which type of cell in the developing eye causes this cancer."

"Knowing which cell causes retinoblastoma would give researchers a specific target for a novel retinoblastoma drug," added Brett Schweers, Ph.D. a postdoctoral fellow in Dyer’s laboratory at St. Jude. "The biochemical pathway driving the multiplication of a cancer cell of origin would differ, depending on whether it was a progenitor cell or one of the more specialized cells. So it would be important to know which type of cell is giving rise to the tumor. That way you could design a drug to knock out the pathway driving the abnormal growth in that particular cell."

Donovan and Schweers are the first and second authors respectively of the paper and contributed equally to the work.

Dyer’s team previously developed the first reliable mouse models of retinoblastoma that could be used to test new drug therapies for this tumor: http://www.stjude.org/media/0,2561,453_5485_11388,00.html.

Subsequently, the team used these models to demonstrate that a combination of topotecan and carboplatin were superior to the current treatment being used to treat retinoblastoma: http://www.stjude.org/developmental-neurobiology/0,2522,414_2041_19593,00.html.

Other authors of the paper include Rodrigo Martins of St. Jude and Dianna Johnson (University of Tennessee).

Bonnie Kourvelas | EurekAlert!
Further information:
http://www.stjude.org
http://www.stjude.org/media/0,2561,453_5485_11388,00.html
http://www.stjude.org/developmental-neurobiology/0,2522,414_2041_19593,00.html

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>