Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What controls stickiness of ’smart’ chromosomal glue

09.05.2006
Researchers have a new understanding of the process cells use to ensure that sperm and eggs begin life with exactly one copy of each chromosome – a process that must be exquisitely regulated to prevent problems such as miscarriages and mental retardation. The new work reveals how gluelike protein complexes release pairs of chromosomes at precisely the moment of meiosis – the specialized cell division process that produces sperm and eggs – enabling them to separate properly.

The researchers, led by Howard Hughes Medical Institute investigator Angelika Amon, published their findings online May 3, 2006, in the journal Nature. Amon and her colleagues are at the Massachusetts Institute of Technology.

Most cells in the human body – all those other than sperm and eggs – contain 23 pairs of chromosomes. These cells divide through mitosis, a process that creates daughter cells with the same complement of chromosome pairs as the parent. Sperm and egg cells, on the other hand, must contain only half the chromosomes of their parent cells, so that the normal chromosome number will be restored when the sperm and egg unite during fertilization. To achieve this, they are produced through meiosis.

Gluelike protein complexes called cohesins, which hold the members of a chromosome pair together until just the right moment during cell division, are central to both processes. Bound together by cohesins, chromosome pairs must organize themselves in preparation for cell division before they can be released.

According to Amon, a deeper basic knowledge of the mechanism of cohesin loss during meiosis could ultimately improve understanding of the origins of miscarriages and mental retardation due to mis-segregation of chromosomes.

"We first need to understand the key regulatory players and the molecular mechanisms that cause chromosomes to segregate in this very unusual way during meiosis," she said. "Once we have a good enough understanding, then we can ask, for example, what exactly happens to cohesins in older women that make them more likely to give birth to children with an abnormal chromosome number."

According to Amon, knowledge about the mechanism of cohesin function has remained sketchy, even though it plays a central role in meiosis. Researchers knew that an enzyme called separase snips apart cohesins, targeting a specific subunit of the cohesin complex called Rec8. Also, she said, researchers had found that Rec8 cleavage was promoted by phosphorylation -- the addition of chemical phosphate groups -- of Rec8.

Researchers also knew that cohesins release chromosome pairs from one another’s embrace quite differently during meiosis and mitosis. In mitosis, cohesins release chromosomes along their entire length simultaneously. However, in the initial stage of meiosis, cohesins first release only the "arms" of chromosomes, still holding the chromosomes together at their central connection point, the centromere. Only in a second stage of meiosis that gives rise to haploid sperm or egg cells do centromeric cohesins become cleaved. This precisely controlled centromeric "stickiness" is essential for the accurate segregation of sister chromatids into separate cells.

"The key question we wanted to explore was how this step-wise loss of cohesins in meiosis was regulated," said Amon. "It could be that the enzyme separase was the key regulatory player, or it could be that it was the phosphorylation of cohesins that was central."

To find out, the researchers experimented with yeast cells, selectively mutating the Rec8 subunit so that it could not be phosphorylated. They then studied how the cell’s inability to phosphorylate Rec8 affected meiosis. Those experiments showed that phosphorylation is, indeed, important for governing the step-wise loss of cohesins, said Amon. She also noted that research published in two complementary papers from the laboratories of Kim Nasmyth and Yoshinori, which also appeared in Nature, demonstrated that cohesins can be retained at the centromeres during meiosis by enzymes that remove phosphates from the cohesins, counteracting the effects of phosphorylation.

Amon and her colleagues found that phosphorylation was not the only process essential for cohesion removal. Recombination – an exchange of DNA between chromosomes that promotes genetic diversity – was also needed for the initial removal of cohesin from the chromosome arms, they found.

In meiotic recombination, after each member of a chromosome pair has replicated to produce identical sister chromotids in the initial stage of meiosis, the chromosomes exchange arm segments. Only after this exchange, or recombination, do the cells proceed to the second stage of meiosis -- dividing without chromosome replication to produce haploid sperm or egg cells. Recombination is essential for cohesins to get removed from chromosome arms before they are removed from centromeres, Amon said.

"For a long time, people did not think that recombination played any role in establishing the step-wise cohesin loss pattern," she said. "But our experiments showed that recombination is absolutely essential to remove cohesins from chromosome arms during the initial meiotic stages, and if you don’t have recombination that does not happen properly."

Amon also said that the Nature paper represents a significant advance in understanding the enzyme that phosphorylates Rec8, named Polo kinase, because it more accurately identified the specific sites on the Rec8 subunit that Polo phosphorylates. Firm identification of such sites will enable more precise studies of the mechanism of function of Rec8, and will also enable scientists to identify other protein targets of Polo kinase, she said.

Amon emphasized that the discovery of the importance of phosphorylation and recombination is only the beginning of understanding the intricate, critical process of cohesin loss. "There are no doubt other mechanisms at work in cohesin loss, but at this point we don’t know what they are," she said. She theorized, however, that regulation of the cohesin-snipping enzyme separase plays a role in regulating step-wise cohesin loss; she and her colleagues are now exploring that possibility.

Jennifer Michalowski | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>