Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

White blood cells from cancer-resistant mice cure cancers in ordinary mice

09.05.2006
White blood cells from a strain of cancer-resistant mice cured advanced cancers in ordinary laboratory mice, researchers at Wake Forest University School of Medicine reported today.

"Even highly aggressive forms of malignancy with extremely large tumors were eradicated," Zheng Cui, M.D., Ph.D., and colleagues reported in this week’s on-line edition of Proceedings of the National Academy of Sciences.

The transplanted white blood cells not only killed existing cancers, but also protected normal mice from what should have been lethal doses of highly aggressive new cancers.

"This is the very first time that this exceptionally aggressive type of cancer was treated successfully," said Cui. "Never before has this been done with any other therapy."

The original studies on the cancer-resistant mice – reported in 2003 – showed that such resistance could be inherited, which had implications for inheritance of resistance in humans, said Mark C. Willingham, M.D., a pathologist and co-investigator. "This study shows that you can use this resistant-cell therapy in mice and that the therapy works. The next step is to understand the exact way in which it works, and perhaps eventually design such a therapy for humans."

The cancer-resistant mice all stem from a single mouse discovered in 1999. "The cancer resistance trait so far has been passed to more than 2,000 descendants in 14 generations," said Cui, associate professor of pathology. It also has been bred into three additional mouse strains. About 40 percent of each generation inherits the protection from cancer.

The original group of cancer-resistant mice, also described in Proceedings of the National Academy of Sciences, successfully fought off a range of virulent transplanted cancers.

"Now we know that we can take white blood cells from this strange mouse and put them into a normal mouse and these cells will still kill cancers," said Willingham, professor of pathology and head of the Section on Tumor Biology. "This is therapy in a mouse that does not have this magical genetic inheritance."

The transplanted white blood cells included natural killer cells, and other white blood cells called neutrophils and macrophages that are part of the body’s "innate immune system." This system forms a first line of host defense against pathogens, such as bacteria.

"Their activation requires no prior exposure, but rather depends on a pre-determined mechanism to recognize specific patterns on the cancer cell surface," the researchers said.

Moreover, preliminary studies show that the white blood cells also kill "endogenous" cancers – cancers that spring up naturally in the body’s own cells.

Cui and Willingham said the research produced many other surprises. For one thing, if a virulent tumor was planted in a normal mouse’s back, and the transplanted white blood cells were injected into the mouse’s abdomen, the cells still found the cancer without harming normal cells. The kind of cancer didn’t seem to matter.

A single injection of cancer-resistant macrophages offered long-term protection for the entire lifespan of the recipient mouse, something very unexpected, they said.

"The potency and selectivity for cancer cells are so high that, if we learned the mechanism, it would give us hope that this would work in humans," said Cui. "This would suggest that cancer cells send out a signal, but normal white blood cells can’t find them."

Cui said the findings "suggest a cancer-host relationship that may point in a new therapeutic direction in which adverse side effects of treatment are minimal."

The next steps include understanding the molecular mechanism. "The real key is finding the mutation, which is an ongoing investigation in collaboration with several other laboratories," said Willingham.

Cui, Willingham and their colleagues also showed that highly purified natural killer cells, macrophages and neutrophils taken from the cancer-resistant mice killed many different types of cancer cells in laboratory studies in test tubes.

Besides Cui and Willingham, the team includes Amy M. Hicks, Ph.D., Anne M. Sanders, B.S., Holly M. Weir, M.S., Wei Du, M.D., and Joseph Kim, B.A., from pathology, Greg Riedlinger, B.S., from cancer biology, Martha A. Alexander-Miller, Ph.D., from microbiology and immunology, Mark J. Pettenati, Ph.D., and C. Von Kap-Herr, M. Sc., from medical genetics, and Andrew J.G. Simpson, Ph.D., and Lloyd J. Old, M.D., of the Ludwig Institute for Cancer Research in New York.

Robert Conn | EurekAlert!
Further information:
http://www.wfubmc.edu

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>