Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

White blood cells from cancer-resistant mice cure cancers in ordinary mice

09.05.2006
White blood cells from a strain of cancer-resistant mice cured advanced cancers in ordinary laboratory mice, researchers at Wake Forest University School of Medicine reported today.

"Even highly aggressive forms of malignancy with extremely large tumors were eradicated," Zheng Cui, M.D., Ph.D., and colleagues reported in this week’s on-line edition of Proceedings of the National Academy of Sciences.

The transplanted white blood cells not only killed existing cancers, but also protected normal mice from what should have been lethal doses of highly aggressive new cancers.

"This is the very first time that this exceptionally aggressive type of cancer was treated successfully," said Cui. "Never before has this been done with any other therapy."

The original studies on the cancer-resistant mice – reported in 2003 – showed that such resistance could be inherited, which had implications for inheritance of resistance in humans, said Mark C. Willingham, M.D., a pathologist and co-investigator. "This study shows that you can use this resistant-cell therapy in mice and that the therapy works. The next step is to understand the exact way in which it works, and perhaps eventually design such a therapy for humans."

The cancer-resistant mice all stem from a single mouse discovered in 1999. "The cancer resistance trait so far has been passed to more than 2,000 descendants in 14 generations," said Cui, associate professor of pathology. It also has been bred into three additional mouse strains. About 40 percent of each generation inherits the protection from cancer.

The original group of cancer-resistant mice, also described in Proceedings of the National Academy of Sciences, successfully fought off a range of virulent transplanted cancers.

"Now we know that we can take white blood cells from this strange mouse and put them into a normal mouse and these cells will still kill cancers," said Willingham, professor of pathology and head of the Section on Tumor Biology. "This is therapy in a mouse that does not have this magical genetic inheritance."

The transplanted white blood cells included natural killer cells, and other white blood cells called neutrophils and macrophages that are part of the body’s "innate immune system." This system forms a first line of host defense against pathogens, such as bacteria.

"Their activation requires no prior exposure, but rather depends on a pre-determined mechanism to recognize specific patterns on the cancer cell surface," the researchers said.

Moreover, preliminary studies show that the white blood cells also kill "endogenous" cancers – cancers that spring up naturally in the body’s own cells.

Cui and Willingham said the research produced many other surprises. For one thing, if a virulent tumor was planted in a normal mouse’s back, and the transplanted white blood cells were injected into the mouse’s abdomen, the cells still found the cancer without harming normal cells. The kind of cancer didn’t seem to matter.

A single injection of cancer-resistant macrophages offered long-term protection for the entire lifespan of the recipient mouse, something very unexpected, they said.

"The potency and selectivity for cancer cells are so high that, if we learned the mechanism, it would give us hope that this would work in humans," said Cui. "This would suggest that cancer cells send out a signal, but normal white blood cells can’t find them."

Cui said the findings "suggest a cancer-host relationship that may point in a new therapeutic direction in which adverse side effects of treatment are minimal."

The next steps include understanding the molecular mechanism. "The real key is finding the mutation, which is an ongoing investigation in collaboration with several other laboratories," said Willingham.

Cui, Willingham and their colleagues also showed that highly purified natural killer cells, macrophages and neutrophils taken from the cancer-resistant mice killed many different types of cancer cells in laboratory studies in test tubes.

Besides Cui and Willingham, the team includes Amy M. Hicks, Ph.D., Anne M. Sanders, B.S., Holly M. Weir, M.S., Wei Du, M.D., and Joseph Kim, B.A., from pathology, Greg Riedlinger, B.S., from cancer biology, Martha A. Alexander-Miller, Ph.D., from microbiology and immunology, Mark J. Pettenati, Ph.D., and C. Von Kap-Herr, M. Sc., from medical genetics, and Andrew J.G. Simpson, Ph.D., and Lloyd J. Old, M.D., of the Ludwig Institute for Cancer Research in New York.

Robert Conn | EurekAlert!
Further information:
http://www.wfubmc.edu

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>