Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD researchers link novel mutated gene to meal retardation and imbalance

09.05.2006
The research team, directed by Joseph Gleeson, M.D., Director of the Neurogenetics Laboratory at the UCSD School of Medicine and associate professor in the Department of Neurosciences, have identified a new gene that, when mutated, leads to JSRD. Their findings will be published on-line May 7 in advance of publication in the journal Nature Genetics.

JSRD is a group of neurodevelopmental syndromes marked by absence of the middle part of the cerebellum called the vermis, along with features including poor balance, jerky eye movements, mental retardation and autism. The most consistent feature seen in children affected with JSRD is a striking finding on brain MRI called the "molar-tooth sign," in which the base of the brain takes on the appearance of a tooth. A subset of JSRD patients also displays disease in other body organs including the retina, kidneys and liver.

The discovery of the new gene linked to JSRD was found in collaboration with scientists at the Mendel Institute in Rome, under the direction of Enza Maria Valente. The researchers studied a large family from Sardinia, Italy, with several members exhibiting the disease. Within the family, in which the parents were second cousins, the scientists discovered a new genetic interval and the presence of the CEP290 (Centrosome-associated protein 290) gene. The research teams identified inactivating mutations in CEP290 in this family and mutations were also identified in families with similar diseases in Turkey, the Palestinian region of Israel and Pakistan. This gene has not previously been implicated in human disease, and encodes a novel protein, previously identified as a centrosomal-associated protein, but with unknown function.

Once the mutations were identified, the group set out to understand the role of the protein in development of the human cerebellum. They found that the gene was produced predominantly in the population of neurons in the brain called cerebellar granule neurons. They also discovered specific protein targets suggesting that the gene may control cell division in the cerebellum during the human development, which would account for the cerebellar defect seen in these patients.

"The results are interesting, because they connect JSRD with other diseases in which retina, kidney and liver are diseased," said Gleeson. These diseases, including recessive kidney cyst disease, Senior-Loken, Bardet-Biedl and Meckel syndromes, are caused by genes that encode proteins localized to ciliated structures or the centrosome. "The data suggests that JSRD may fall into these groups of conditions, although the exact mechanism of how the CEP290 protein regulates cerebellar development remains unknown."

In 2004, Gleeson and his colleagues – along with scientists at Harvard University – discovered mutations in the AH1 gene found on chromosome 6 DNA. The gene is responsible for the most common of three known forms of Joubert Syndrome and was the first genetic defect clearly associated with the disorder.

Additional contributors to the current study include Jennifer Silhavy, Suguna Krishnaswami, Madeline Lancaster and Carrie Louie from the Gleeson lab; Francesco Brancati, Giuseppe Barrano, Maro Castori, Emanuele Bellacchio and Bruno Dallapiccola from the Valente Lab; Eugen Bolshauser, Children’s University Hospital in Zurich, Switzerland; Loredana Boccone, Ospedale Microcitemico, Cagliari, Italy; Lihadh Al-Gazali, United Emirates University; Elisa Fazzi, University of Pavia, Italy; Enrico Bertini, Bambino Gesu Hospital in Rome and the International JSRD Study Group.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Flavins keep a handy helper in their pocket
25.04.2018 | University of Freiburg

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>