Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UCSD researchers link novel mutated gene to meal retardation and imbalance

The research team, directed by Joseph Gleeson, M.D., Director of the Neurogenetics Laboratory at the UCSD School of Medicine and associate professor in the Department of Neurosciences, have identified a new gene that, when mutated, leads to JSRD. Their findings will be published on-line May 7 in advance of publication in the journal Nature Genetics.

JSRD is a group of neurodevelopmental syndromes marked by absence of the middle part of the cerebellum called the vermis, along with features including poor balance, jerky eye movements, mental retardation and autism. The most consistent feature seen in children affected with JSRD is a striking finding on brain MRI called the "molar-tooth sign," in which the base of the brain takes on the appearance of a tooth. A subset of JSRD patients also displays disease in other body organs including the retina, kidneys and liver.

The discovery of the new gene linked to JSRD was found in collaboration with scientists at the Mendel Institute in Rome, under the direction of Enza Maria Valente. The researchers studied a large family from Sardinia, Italy, with several members exhibiting the disease. Within the family, in which the parents were second cousins, the scientists discovered a new genetic interval and the presence of the CEP290 (Centrosome-associated protein 290) gene. The research teams identified inactivating mutations in CEP290 in this family and mutations were also identified in families with similar diseases in Turkey, the Palestinian region of Israel and Pakistan. This gene has not previously been implicated in human disease, and encodes a novel protein, previously identified as a centrosomal-associated protein, but with unknown function.

Once the mutations were identified, the group set out to understand the role of the protein in development of the human cerebellum. They found that the gene was produced predominantly in the population of neurons in the brain called cerebellar granule neurons. They also discovered specific protein targets suggesting that the gene may control cell division in the cerebellum during the human development, which would account for the cerebellar defect seen in these patients.

"The results are interesting, because they connect JSRD with other diseases in which retina, kidney and liver are diseased," said Gleeson. These diseases, including recessive kidney cyst disease, Senior-Loken, Bardet-Biedl and Meckel syndromes, are caused by genes that encode proteins localized to ciliated structures or the centrosome. "The data suggests that JSRD may fall into these groups of conditions, although the exact mechanism of how the CEP290 protein regulates cerebellar development remains unknown."

In 2004, Gleeson and his colleagues – along with scientists at Harvard University – discovered mutations in the AH1 gene found on chromosome 6 DNA. The gene is responsible for the most common of three known forms of Joubert Syndrome and was the first genetic defect clearly associated with the disorder.

Additional contributors to the current study include Jennifer Silhavy, Suguna Krishnaswami, Madeline Lancaster and Carrie Louie from the Gleeson lab; Francesco Brancati, Giuseppe Barrano, Maro Castori, Emanuele Bellacchio and Bruno Dallapiccola from the Valente Lab; Eugen Bolshauser, Children’s University Hospital in Zurich, Switzerland; Loredana Boccone, Ospedale Microcitemico, Cagliari, Italy; Lihadh Al-Gazali, United Emirates University; Elisa Fazzi, University of Pavia, Italy; Enrico Bertini, Bambino Gesu Hospital in Rome and the International JSRD Study Group.

Debra Kain | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>