Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover new regulating mechanism in cells

09.05.2006
Researchers here have discovered a new mechanism used by cells – and manipulated by retroviruses – to control the making of certain essential proteins, including some involved in cancer.

The mechanism uses an enzyme called RNA helicase A (RHA), which is made by the cell.

The study by researchers with The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute and the OSU College of Veterinary Medicine appears online May 7 in the journal Nature Structural and Molecular Biology.

“Our findings provide important insights into how cells regulate certain growth-proteins, many of which play an important role in cancer, and how viruses use cell mechanisms to establish an infection,” says principal investigator Kathleen Boris-Lawrie, professor of veterinary biosciences and a researcher with the OSU Comprehensive Cancer Center .

The study shows, for example, that when RHA is knocked out, the spleen necrosis virus, a retrovirus Boris-Lawrie and her collaborators were studying as a vector for gene therapy, was unable to make certain proteins. Thus, RHA might be a cellular target for future antiretroviral drugs. (Current antiretroviral drugs target the virus itself, which often becomes resistant to them, rendering the drugs ineffective. Antiretroviral drugs that affect cellular targets might be less prone to resistance.)

“Retroviruses seem to take advantage of RHA to enhance production of their own proteins, and cells use it to control the amount of particular proteins they make, many of which are involved in growth control,” says Boris-Lawrie.

“The cell has to keep tight control of these proteins to be sure they are not made at the wrong time.”

Cells use a four-step process to make most proteins. First, the cell makes a copy of a gene. The copy is called messenger RNA, or mRNA, and it describes the structure of the needed protein. Next, the mRNA is processed to remove non-essential information. Then, the message travels from the cell nucleus to another location, the cell cytoplasm. Last, other cell machinery translates the message and assembles the protein.

The findings by Boris-Lawrie and her collaborators show that RHA can play an important role in determining whether the last step of this process – translating the message and making the protein – actually happens.

For this study, the researchers first used mass spectroscopy to identify the cell protein and learned that the protein was RHA.

Then the researchers knocked out the RHA protein and learned that the retrovirus stopped making several vital proteins.

“That suggests that the retrovirus needs RHA to make these essential proteins,” says Boris-Lawrie, “and that means RHA is a potential target for antiretroviral therapy.”

The researchers also learned that when RHA is knocked out, cells can no longer make a protein called junD (pronounced “june D). The regulation of junD is lost in many cancers.

The researchers examined junD because it has something important in common with the retroviral proteins. The mRNA in both cases does not pass through the processing step of the four-step protein-making process. Normally, that processing step also adds a signal to the mRNA that facilitates the final making of the protein.

Because mRNAs like those for junD and the retrovirus are not processed, and therefore lack that signal, scientists have not understood how these mRNAs are translated into protein.

Boris-Lawrie’s findings help solve that long-standing puzzle. RHA provides the missing signal. It attaches to these mRNAs and allows them to be translated into protein. If RHA is missing, the proteins are not made.

During this study, Boris-Lawrie and her colleagues identified additional genes in the human genome that do not undergo the processing step and probably need RHA to be translated. Many of these genes encode proteins that help regulate cell growth and are involved in cancer.

Funding from the National Cancer Institute supported this research.

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>