Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover new regulating mechanism in cells

09.05.2006
Researchers here have discovered a new mechanism used by cells – and manipulated by retroviruses – to control the making of certain essential proteins, including some involved in cancer.

The mechanism uses an enzyme called RNA helicase A (RHA), which is made by the cell.

The study by researchers with The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute and the OSU College of Veterinary Medicine appears online May 7 in the journal Nature Structural and Molecular Biology.

“Our findings provide important insights into how cells regulate certain growth-proteins, many of which play an important role in cancer, and how viruses use cell mechanisms to establish an infection,” says principal investigator Kathleen Boris-Lawrie, professor of veterinary biosciences and a researcher with the OSU Comprehensive Cancer Center .

The study shows, for example, that when RHA is knocked out, the spleen necrosis virus, a retrovirus Boris-Lawrie and her collaborators were studying as a vector for gene therapy, was unable to make certain proteins. Thus, RHA might be a cellular target for future antiretroviral drugs. (Current antiretroviral drugs target the virus itself, which often becomes resistant to them, rendering the drugs ineffective. Antiretroviral drugs that affect cellular targets might be less prone to resistance.)

“Retroviruses seem to take advantage of RHA to enhance production of their own proteins, and cells use it to control the amount of particular proteins they make, many of which are involved in growth control,” says Boris-Lawrie.

“The cell has to keep tight control of these proteins to be sure they are not made at the wrong time.”

Cells use a four-step process to make most proteins. First, the cell makes a copy of a gene. The copy is called messenger RNA, or mRNA, and it describes the structure of the needed protein. Next, the mRNA is processed to remove non-essential information. Then, the message travels from the cell nucleus to another location, the cell cytoplasm. Last, other cell machinery translates the message and assembles the protein.

The findings by Boris-Lawrie and her collaborators show that RHA can play an important role in determining whether the last step of this process – translating the message and making the protein – actually happens.

For this study, the researchers first used mass spectroscopy to identify the cell protein and learned that the protein was RHA.

Then the researchers knocked out the RHA protein and learned that the retrovirus stopped making several vital proteins.

“That suggests that the retrovirus needs RHA to make these essential proteins,” says Boris-Lawrie, “and that means RHA is a potential target for antiretroviral therapy.”

The researchers also learned that when RHA is knocked out, cells can no longer make a protein called junD (pronounced “june D). The regulation of junD is lost in many cancers.

The researchers examined junD because it has something important in common with the retroviral proteins. The mRNA in both cases does not pass through the processing step of the four-step protein-making process. Normally, that processing step also adds a signal to the mRNA that facilitates the final making of the protein.

Because mRNAs like those for junD and the retrovirus are not processed, and therefore lack that signal, scientists have not understood how these mRNAs are translated into protein.

Boris-Lawrie’s findings help solve that long-standing puzzle. RHA provides the missing signal. It attaches to these mRNAs and allows them to be translated into protein. If RHA is missing, the proteins are not made.

During this study, Boris-Lawrie and her colleagues identified additional genes in the human genome that do not undergo the processing step and probably need RHA to be translated. Many of these genes encode proteins that help regulate cell growth and are involved in cancer.

Funding from the National Cancer Institute supported this research.

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

More articles from Life Sciences:

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

Oxygen can wake up dormant bacteria for antibiotic attacks

08.12.2016 | Health and Medicine

Newly discovered bacteria-binding protein in the intestine

08.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>