Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel enzyme offers new look at male hormone regulation

09.05.2006
UNC scientists’ findings have implications for prostate cancer

For the second time in less than a year, University of North Carolina at Chapel Hill scientists have purified a novel protein and have shown it can alter gene activity by reversing a molecular modification previously thought permanent.

The findings, published today (May 5) in the journal Cell, also show that the new protein plays a role in gene activation mediated by androgen receptor, a protein that responds to androgen hormones. In this regard, the novel protein may figure in the development of prostate cancer.

Androgens, particularly testosterone and dihydrotestosterone, determine male secondary sex characteristics and stimulate prostate cell growth. Lowering androgen levels usually can make prostate cancers shrink or grow more slowly.

In the study, the researchers said the new protein called JHDM2A, like the protein they reported on in the journal Nature in December 2005, is able to remove a methyl group from histone H3, one of four histone proteins bound to all genes.

"Human genes are so tightly compact within the nucleus that if the DNA of a single cell were unwound and stretched, it would be a line of about two meters in length. Histones are necessary to package the DNA so that it fits inside a cell’s nucleus," said senior author Dr. Yi Zhang, professor of biochemistry and biophysics at UNC’s School of Medicine and the university’s first Howard Hughes Medical Institute investigator.

Zhang also is a member of the UNC Lineberger Comprehensive Cancer Center.

Because histones are so intimately associated with DNA, even slight chemical alterations of these proteins can have profound effects on nearby genes. Depending on their precise location and how many methyl groups are added, the presence of alterations can either turn on or turn off a gene.

In the study, Zhang learned that the JHDM2A specifically removes methyl-groups from lysine 9 of histone H3.

"The important thing is that H3K9 demethylation has been linked to transcription silencing, turning genes off. So that led us to pay attention to this protein’s role in reversing whatever function K9 methylation might have," Zhang said.

In their experiments, the researchers learned that consistent with reversing a marker of gene silencing (H3K9 methylation), the protein functions as a co-activator – in this case, a co-activator for the androgen receptor target genes.

Using human tissue cultures, including prostate cells, Zhang and his colleagues found that over-expression of JHDM2A greatly reduced H3K9 methylation level and led to upregulation, or switching on, of androgen receptor target genes. In contrast, when methylation was increased, the gene was silenced – switched off.

It remains unclear for how many different human genes JHDM2A is a primary regulator. According to Zhang, the new findings indicate that the protein will provide another tool to enlist in studies of gene expression regulation.

"Given the androgen receptor link, we’re now trying to identify the downstream target genes, as well as its role in prostate cancer," he said.

"Theoretically, this protein is a very important tool for gene expression studies. Practically, it provides a potential target for prostate cancer because of its enzymatic activity. And it is enzymatic activity that’s the favorite target of drug development."

Leslie H. Lang | EurekAlert!
Further information:
http://www.med.unc.edu

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>