Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel enzyme offers new look at male hormone regulation

09.05.2006
UNC scientists’ findings have implications for prostate cancer

For the second time in less than a year, University of North Carolina at Chapel Hill scientists have purified a novel protein and have shown it can alter gene activity by reversing a molecular modification previously thought permanent.

The findings, published today (May 5) in the journal Cell, also show that the new protein plays a role in gene activation mediated by androgen receptor, a protein that responds to androgen hormones. In this regard, the novel protein may figure in the development of prostate cancer.

Androgens, particularly testosterone and dihydrotestosterone, determine male secondary sex characteristics and stimulate prostate cell growth. Lowering androgen levels usually can make prostate cancers shrink or grow more slowly.

In the study, the researchers said the new protein called JHDM2A, like the protein they reported on in the journal Nature in December 2005, is able to remove a methyl group from histone H3, one of four histone proteins bound to all genes.

"Human genes are so tightly compact within the nucleus that if the DNA of a single cell were unwound and stretched, it would be a line of about two meters in length. Histones are necessary to package the DNA so that it fits inside a cell’s nucleus," said senior author Dr. Yi Zhang, professor of biochemistry and biophysics at UNC’s School of Medicine and the university’s first Howard Hughes Medical Institute investigator.

Zhang also is a member of the UNC Lineberger Comprehensive Cancer Center.

Because histones are so intimately associated with DNA, even slight chemical alterations of these proteins can have profound effects on nearby genes. Depending on their precise location and how many methyl groups are added, the presence of alterations can either turn on or turn off a gene.

In the study, Zhang learned that the JHDM2A specifically removes methyl-groups from lysine 9 of histone H3.

"The important thing is that H3K9 demethylation has been linked to transcription silencing, turning genes off. So that led us to pay attention to this protein’s role in reversing whatever function K9 methylation might have," Zhang said.

In their experiments, the researchers learned that consistent with reversing a marker of gene silencing (H3K9 methylation), the protein functions as a co-activator – in this case, a co-activator for the androgen receptor target genes.

Using human tissue cultures, including prostate cells, Zhang and his colleagues found that over-expression of JHDM2A greatly reduced H3K9 methylation level and led to upregulation, or switching on, of androgen receptor target genes. In contrast, when methylation was increased, the gene was silenced – switched off.

It remains unclear for how many different human genes JHDM2A is a primary regulator. According to Zhang, the new findings indicate that the protein will provide another tool to enlist in studies of gene expression regulation.

"Given the androgen receptor link, we’re now trying to identify the downstream target genes, as well as its role in prostate cancer," he said.

"Theoretically, this protein is a very important tool for gene expression studies. Practically, it provides a potential target for prostate cancer because of its enzymatic activity. And it is enzymatic activity that’s the favorite target of drug development."

Leslie H. Lang | EurekAlert!
Further information:
http://www.med.unc.edu

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>