Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists from the UJI use computational chemistry methods to know ...

09.05.2006
... about the nature of reactions in living beings and to be able to inhibit or accelerate them

Experimental methods have certain limits and there are times when nature briefly switches off the lights on scene to hide its tricks. One of these moments takes place during chemical reactions. All chemical reactions go through a sort of Limbo, a ghost-like stage between the initial reagents and the final product in which it is almost impossible to know experimentally what has occurred in the intermediate phase. A group of researchers from the Universitat Jaume I (UJI) of Castelló use techniques based on computational chemistry to theoretically model this unknown transition state and thus design compounds that either inhibit or enhance the action of biological catalysts.

A chemical reaction resembles the pass from one valley to another by way of a mountain. Valleys are stable areas, but if we attempt to go from one to the other, we need to cross an unstable point of maximum height along the way, that is, a hill. In the case of a chemical reaction, the initial and final molecules also have the features of stable structures that can be studied experimentally. To skip between them however, it is necessary to go through an unstable structure of maximum energy throughout the reaction, the hill of the chemical reaction, or in other words, its transition state.

This state is particularly interesting because biological catalysts or enzymes which accelerate chemical reactions taking place in living beings (from the transformation of food into energy to cell reproduction, among many others) do so by stabilising this unstable structure. Intervening in this transition state would allow us to stop or enhance a chemical reaction. However, this is so brief that it is impossible to know its structure in an experimental way. By means of theoretical simulations and the use of high-performance computers, researchers at the UJI have found out the way that certain chemical reactions follow, and have either suggested ways of blocking it, or proposed more efficient alternative routes.

“If we know the transition state structure, which is unstable by definition and, therefore, cannot be studied experimentally, we can then synthesise molecules that are similar to it yet chemically stable, which in other words is known as a transition state analogue”, explains Vicent Moliner, the person in charge of the research. The transition state analogue (TSA) is the molecular negative of the enzyme catalysing a certain reaction. This may then be used to block such enzyme action, by thus inhibiting an undesired chemical reaction from occurring.

“The development of this project is fundamental to improve the selectivity of drugs applied in chemical-therapeutic treatments. If we are able to know the structure of transition states in catalytic reactions involved, for example, in cell proliferation processes in tumours, we will be able to design drugs capable of stopping these reactions and preventing the spread of cancer”, explains Vicent Moliner. This principle can also be applied to other pathologies. “Among other systems, we are currently working with catechol-O-methyl transferase given its future applications in the treatment of degenerative diseases such as Parkinson’s disease. We are also working with HIV-1 IN, an enzyme that uses the HIV virus to replicate itself”, Moliner adds.

In the case of degenerative diseases, Moliner’s team has managed to define the structure of the transition state of a chemical reaction which is a key factor in the production of dopamine. The disequilibrium in the generation of this neurotransmitter is responsible for certain neurological diseases, such as Parkinson’s disease. “Knowing the structure of this reaction is a crucial step. We are now close to being able to suggest the synthesis of inhibitors that correct the disequilibrium of dopamine”, explains Vicent Moliner. The results have been published in several articles in the Journal of the American Chemical Society and in Chemical Society Reviews.

However, knowing the structure of chemical reactions is not only useful to block them, but also to propose biological catalysts for chemical reactions that we wish to accelerate. To this end, the TSA compound is introduced in a living system ( a rodent) to generate antibodies that will be macromolecules to complement TSA, that is, something like its photograph negative. Since antibodies are complementary to TSA, they can then be used as catalysts as they stabilise the transition state of the chemical reaction. These compounds are known as catalytic antibodies (CA).

“Nevertheless, catalytic antibodies that are generated so (germline CA) do not work very well as catalysts, so an improvement is sought for by means of selective mutations in the lab through trial and error tests (matured CA). However, this improvement is not very effective, and the work we have been carrying out in our group allows us to rationally determine what mutations should be tested in the lab to enhance the catalytic activity of CA”, Moliner points out. “These new molecules are particularly interesting in processes for which no catalyst exists to catalyse them, or for those processes in which the enzyme is not functioning properly”, Moliner indicates. These results have recently been published in the journal Angewandte Chemie.

Hugo Cerdà | alfa
Further information:
http://www.uji.es/ocit/noticies/detall&id_a=6308144

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>