Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists from the UJI use computational chemistry methods to know ...

... about the nature of reactions in living beings and to be able to inhibit or accelerate them

Experimental methods have certain limits and there are times when nature briefly switches off the lights on scene to hide its tricks. One of these moments takes place during chemical reactions. All chemical reactions go through a sort of Limbo, a ghost-like stage between the initial reagents and the final product in which it is almost impossible to know experimentally what has occurred in the intermediate phase. A group of researchers from the Universitat Jaume I (UJI) of Castelló use techniques based on computational chemistry to theoretically model this unknown transition state and thus design compounds that either inhibit or enhance the action of biological catalysts.

A chemical reaction resembles the pass from one valley to another by way of a mountain. Valleys are stable areas, but if we attempt to go from one to the other, we need to cross an unstable point of maximum height along the way, that is, a hill. In the case of a chemical reaction, the initial and final molecules also have the features of stable structures that can be studied experimentally. To skip between them however, it is necessary to go through an unstable structure of maximum energy throughout the reaction, the hill of the chemical reaction, or in other words, its transition state.

This state is particularly interesting because biological catalysts or enzymes which accelerate chemical reactions taking place in living beings (from the transformation of food into energy to cell reproduction, among many others) do so by stabilising this unstable structure. Intervening in this transition state would allow us to stop or enhance a chemical reaction. However, this is so brief that it is impossible to know its structure in an experimental way. By means of theoretical simulations and the use of high-performance computers, researchers at the UJI have found out the way that certain chemical reactions follow, and have either suggested ways of blocking it, or proposed more efficient alternative routes.

“If we know the transition state structure, which is unstable by definition and, therefore, cannot be studied experimentally, we can then synthesise molecules that are similar to it yet chemically stable, which in other words is known as a transition state analogue”, explains Vicent Moliner, the person in charge of the research. The transition state analogue (TSA) is the molecular negative of the enzyme catalysing a certain reaction. This may then be used to block such enzyme action, by thus inhibiting an undesired chemical reaction from occurring.

“The development of this project is fundamental to improve the selectivity of drugs applied in chemical-therapeutic treatments. If we are able to know the structure of transition states in catalytic reactions involved, for example, in cell proliferation processes in tumours, we will be able to design drugs capable of stopping these reactions and preventing the spread of cancer”, explains Vicent Moliner. This principle can also be applied to other pathologies. “Among other systems, we are currently working with catechol-O-methyl transferase given its future applications in the treatment of degenerative diseases such as Parkinson’s disease. We are also working with HIV-1 IN, an enzyme that uses the HIV virus to replicate itself”, Moliner adds.

In the case of degenerative diseases, Moliner’s team has managed to define the structure of the transition state of a chemical reaction which is a key factor in the production of dopamine. The disequilibrium in the generation of this neurotransmitter is responsible for certain neurological diseases, such as Parkinson’s disease. “Knowing the structure of this reaction is a crucial step. We are now close to being able to suggest the synthesis of inhibitors that correct the disequilibrium of dopamine”, explains Vicent Moliner. The results have been published in several articles in the Journal of the American Chemical Society and in Chemical Society Reviews.

However, knowing the structure of chemical reactions is not only useful to block them, but also to propose biological catalysts for chemical reactions that we wish to accelerate. To this end, the TSA compound is introduced in a living system ( a rodent) to generate antibodies that will be macromolecules to complement TSA, that is, something like its photograph negative. Since antibodies are complementary to TSA, they can then be used as catalysts as they stabilise the transition state of the chemical reaction. These compounds are known as catalytic antibodies (CA).

“Nevertheless, catalytic antibodies that are generated so (germline CA) do not work very well as catalysts, so an improvement is sought for by means of selective mutations in the lab through trial and error tests (matured CA). However, this improvement is not very effective, and the work we have been carrying out in our group allows us to rationally determine what mutations should be tested in the lab to enhance the catalytic activity of CA”, Moliner points out. “These new molecules are particularly interesting in processes for which no catalyst exists to catalyse them, or for those processes in which the enzyme is not functioning properly”, Moliner indicates. These results have recently been published in the journal Angewandte Chemie.

Hugo Cerdà | alfa
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>