Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New discovery about role of sugar in cell communication

09.05.2006
A research team from Uppsala University has uncovered an entirely new mechanism for how communication between cells is regulated. By functioning like glue, a certain type of sugar in the body can make cell communication more effective and stimulate the generation of new blood vessels. The discovery paves the way for the development of drugs for cancer and rheumatism, for example. The study is being published on May 9 in the prominent journal Developmental Cell.

Blood vessels are made up of tubes consisting of endothelial cells, support cells, and membranes in various layers. The inside of the vessel is covered with endothelial cells. Blood is transported throughout the body in blood vessels, providing tissues with oxygen and nourishment. To carry out this assignment and to form new blood vessels, it is necessary to have close contact and communication between the various cells and membranes of the blood vessels.


Cell communication. Endothelial cells (red) communicate with support cells (green) introducing heparan sulfate, a type of sugar found in the body, on their surfaces. The cell nuclei appear in blue.

In order to study how cell communication regulates the new generation of blood cells, a research team from Uppsala University studied blood vessels grown from embryonic stem cells from mice. By genetic modification of the stem cells, these scientists can now show that the production of the sugar molecule heparan sulfate is an absolute requirement for the formation of blood vessels.

“We made use of stem cells with two types of genetic modifications. In the first we removed the gene that produces the enzyme needed for sugar chains to bind various growth factors. In the other modification we removed the gene that produces the receptor for the growth factor VEGF (vascular endothelial growth factor),” says Lars Jakobsson.

The first modification resulted in cells with defective heparan sulfate and the other in the cells’ not being able to form the receptor for VEGF. Neither of these two types of stem cells was able to generate blood vessels on its own.

“To further study the role of heparan sulfate in cells, we developed a model in which we let the different stem cell modifications grow together. It turned out that under these conditions the cells were able to generate lots of blood vessels. This is highly surprising, and exciting. It provides us with new information about how various cells can communicate and support each other in forming various organs in the body,” says Lars Jakobsson.

The new stem cell model makes it possible to create cultures in which heparan sulfate is produced solely by support cells and not by endothelial cells. It has previously been known that heparan sulfate binds various growth factors, including VEGF, and ’introduces’ these factors to the receptors on the surface of the cell. The Uppsala researchers are now demonstrating that VEGF that is introduced by heparan sulfate to support cells (as opposed to the heparan sulfate found on endothelial cells) provides a much stronger and longer-lasting effect on the activation of endothelial cells. The conclusion is that both the amount and the position of the heparan sulfate play a decisive role in the formation of new blood vessels.

“We show that heparan sulfate serves as glue that holds VEGF and its receptors in place on the surface of the cell so that the signal to generate new blood vessels lingers much longer. It was not previously known that heparan sulfate has this function, and the function may very well apply to other systems of receptors and communication,” Lars Jakobsson believes.

These scientists have thus identified an entirely new mechanism for how communication can be regulated between cells. This clears the way for the creation of new drugs that can regulate the new generation of blood vessels. Such drugs could improve the treatment of cancer, rheumatism, and certain eye disease, for instance.

Linda Nohrstedt | alfa
Further information:
http://info.uu.se/press.nsf/pm/new.discovery.idDCA.html

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>