Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New discovery about role of sugar in cell communication

09.05.2006
A research team from Uppsala University has uncovered an entirely new mechanism for how communication between cells is regulated. By functioning like glue, a certain type of sugar in the body can make cell communication more effective and stimulate the generation of new blood vessels. The discovery paves the way for the development of drugs for cancer and rheumatism, for example. The study is being published on May 9 in the prominent journal Developmental Cell.

Blood vessels are made up of tubes consisting of endothelial cells, support cells, and membranes in various layers. The inside of the vessel is covered with endothelial cells. Blood is transported throughout the body in blood vessels, providing tissues with oxygen and nourishment. To carry out this assignment and to form new blood vessels, it is necessary to have close contact and communication between the various cells and membranes of the blood vessels.


Cell communication. Endothelial cells (red) communicate with support cells (green) introducing heparan sulfate, a type of sugar found in the body, on their surfaces. The cell nuclei appear in blue.

In order to study how cell communication regulates the new generation of blood cells, a research team from Uppsala University studied blood vessels grown from embryonic stem cells from mice. By genetic modification of the stem cells, these scientists can now show that the production of the sugar molecule heparan sulfate is an absolute requirement for the formation of blood vessels.

“We made use of stem cells with two types of genetic modifications. In the first we removed the gene that produces the enzyme needed for sugar chains to bind various growth factors. In the other modification we removed the gene that produces the receptor for the growth factor VEGF (vascular endothelial growth factor),” says Lars Jakobsson.

The first modification resulted in cells with defective heparan sulfate and the other in the cells’ not being able to form the receptor for VEGF. Neither of these two types of stem cells was able to generate blood vessels on its own.

“To further study the role of heparan sulfate in cells, we developed a model in which we let the different stem cell modifications grow together. It turned out that under these conditions the cells were able to generate lots of blood vessels. This is highly surprising, and exciting. It provides us with new information about how various cells can communicate and support each other in forming various organs in the body,” says Lars Jakobsson.

The new stem cell model makes it possible to create cultures in which heparan sulfate is produced solely by support cells and not by endothelial cells. It has previously been known that heparan sulfate binds various growth factors, including VEGF, and ’introduces’ these factors to the receptors on the surface of the cell. The Uppsala researchers are now demonstrating that VEGF that is introduced by heparan sulfate to support cells (as opposed to the heparan sulfate found on endothelial cells) provides a much stronger and longer-lasting effect on the activation of endothelial cells. The conclusion is that both the amount and the position of the heparan sulfate play a decisive role in the formation of new blood vessels.

“We show that heparan sulfate serves as glue that holds VEGF and its receptors in place on the surface of the cell so that the signal to generate new blood vessels lingers much longer. It was not previously known that heparan sulfate has this function, and the function may very well apply to other systems of receptors and communication,” Lars Jakobsson believes.

These scientists have thus identified an entirely new mechanism for how communication can be regulated between cells. This clears the way for the creation of new drugs that can regulate the new generation of blood vessels. Such drugs could improve the treatment of cancer, rheumatism, and certain eye disease, for instance.

Linda Nohrstedt | alfa
Further information:
http://info.uu.se/press.nsf/pm/new.discovery.idDCA.html

More articles from Life Sciences:

nachricht Kidney tumor: Genetic trigger discovered
18.06.2018 | Julius-Maximilians-Universität Würzburg

nachricht New type of photosynthesis discovered
18.06.2018 | Imperial College London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>