Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New discovery about role of sugar in cell communication

09.05.2006
A research team from Uppsala University has uncovered an entirely new mechanism for how communication between cells is regulated. By functioning like glue, a certain type of sugar in the body can make cell communication more effective and stimulate the generation of new blood vessels. The discovery paves the way for the development of drugs for cancer and rheumatism, for example. The study is being published on May 9 in the prominent journal Developmental Cell.

Blood vessels are made up of tubes consisting of endothelial cells, support cells, and membranes in various layers. The inside of the vessel is covered with endothelial cells. Blood is transported throughout the body in blood vessels, providing tissues with oxygen and nourishment. To carry out this assignment and to form new blood vessels, it is necessary to have close contact and communication between the various cells and membranes of the blood vessels.


Cell communication. Endothelial cells (red) communicate with support cells (green) introducing heparan sulfate, a type of sugar found in the body, on their surfaces. The cell nuclei appear in blue.

In order to study how cell communication regulates the new generation of blood cells, a research team from Uppsala University studied blood vessels grown from embryonic stem cells from mice. By genetic modification of the stem cells, these scientists can now show that the production of the sugar molecule heparan sulfate is an absolute requirement for the formation of blood vessels.

“We made use of stem cells with two types of genetic modifications. In the first we removed the gene that produces the enzyme needed for sugar chains to bind various growth factors. In the other modification we removed the gene that produces the receptor for the growth factor VEGF (vascular endothelial growth factor),” says Lars Jakobsson.

The first modification resulted in cells with defective heparan sulfate and the other in the cells’ not being able to form the receptor for VEGF. Neither of these two types of stem cells was able to generate blood vessels on its own.

“To further study the role of heparan sulfate in cells, we developed a model in which we let the different stem cell modifications grow together. It turned out that under these conditions the cells were able to generate lots of blood vessels. This is highly surprising, and exciting. It provides us with new information about how various cells can communicate and support each other in forming various organs in the body,” says Lars Jakobsson.

The new stem cell model makes it possible to create cultures in which heparan sulfate is produced solely by support cells and not by endothelial cells. It has previously been known that heparan sulfate binds various growth factors, including VEGF, and ’introduces’ these factors to the receptors on the surface of the cell. The Uppsala researchers are now demonstrating that VEGF that is introduced by heparan sulfate to support cells (as opposed to the heparan sulfate found on endothelial cells) provides a much stronger and longer-lasting effect on the activation of endothelial cells. The conclusion is that both the amount and the position of the heparan sulfate play a decisive role in the formation of new blood vessels.

“We show that heparan sulfate serves as glue that holds VEGF and its receptors in place on the surface of the cell so that the signal to generate new blood vessels lingers much longer. It was not previously known that heparan sulfate has this function, and the function may very well apply to other systems of receptors and communication,” Lars Jakobsson believes.

These scientists have thus identified an entirely new mechanism for how communication can be regulated between cells. This clears the way for the creation of new drugs that can regulate the new generation of blood vessels. Such drugs could improve the treatment of cancer, rheumatism, and certain eye disease, for instance.

Linda Nohrstedt | alfa
Further information:
http://info.uu.se/press.nsf/pm/new.discovery.idDCA.html

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>