Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Cellular antennae’ on algae give clues to how human cells receive signals

08.05.2006
By studying microscopic hairs called cilia on algae, researchers at UT Southwestern Medical Center have found that an internal structure that helps build cilia is also responsible for a cell’s response to external signals.

Cilia perform many functions on human cells; they propel egg and sperm cells to make fertilization possible, line the nose to pick up odors, and purify the blood, among other tasks.

With such a range of abilities, cilia serve as both motors and "cellular antennae," said Dr. William Snell, a professor of cell biology at UT Southwestern and senior author of new research on cilia published in the May 5 issue of Cell.

Genetic defects in cilia can cause people to develop debilitating kidney disease or to be born with learning disabilities, extra fingers or toes, or the inability to smell.

But no one really knows how cilia work, or, in some parts of the body, what their function is.

"There are cilia all over within our brain, and we don’t have a clue about what they’re doing," Dr. Snell said.

He and his team use the microscopic green alga, Chlamydomonas reinhardtii, which has two individual cilia. This alga allows researchers to manipulate genes and study the resulting effects on cilia in a way that would be impossible in animals such as mice.

"Chlamy is one of the few model organisms in which it’s possible to do these kinds of studies," Dr. Snell said. Normally, cilia — also called flagella — are built and maintained by an internal bidirectional, escalator-like system that ferries molecules to and from the tips by a process called intraflagellar transport, or IFT.

The UT Southwestern researchers used a mutant temperature-sensitive strain of the alga that behaved normally at lower temperatures. At higher temperatures, however, the IFT process stopped, and its components disappeared from the cilia. The cilia themselves were still able to beat, or move back and forth, for about 40 minutes before they began to shorten.

The team focused on fertilization of the alga, a process that requires a cilium to bind to a molecule on a cilium from a cell of the opposite mating type. They found that when the external molecule binds to a cilium, it activates an enzyme that signals the start of a chain of chemical reactions.

Although the cilia could move without IFT and bind to the molecules of the cilia of the opposite type, those cells were unable to respond to the signaling molecules. The failure to activate the chain of chemical reactions indicated that IFT was necessary for this function.

Analysis showed that the cilia signaling process was similar to that found in human cells, such as those in the nose involved in the sense of smell and those in the developing nervous system that sculpt our brains.

Uncovering this series of reactions will make it possible to test, for instance, drugs that can affect cilia, in the hope of finding substances that would also be effective in higher animals, Dr. Snell said.

"This is another example of how basic science research can have big results," he said. "Studies on Chlamydomonas will help us understand the unique qualities of cilia that have led to their use in chemosensory pathways in humans."

Other UT Southwestern researchers involved in the study were Dr. Qian Wang, lead author and postdoctoral researcher in cell biology, and Dr. Junmin Pan, assistant professor of cell biology.

The work was supported by the National Institutes of Health.

Aline McKenzie | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>