Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insulin research builds on Nobel Laureate’s work

08.05.2006
Scientists have seen for the first time a key step in the complex molecular processes whereby pancreas cells release insulin into the bloodstream.

The breakthrough, which builds on earlier Nobel-Prize winning research, could have implications for the treatment of diabetes which is caused when not enough insulin is released by the pancreas to meet the body’s demands.

The team of scientists from the University of Manchester, Charite University in Berlin, and the University of Heidelberg say the findings could also be important in understanding other diseases, as hormone and protein secretion is an important function of all types of cell.

“Large numbers of proteins, including hormones such as insulin, are constantly being produced by our cells and carry out essential functions in the body,” explained Dr Martin Pool, based in Manchester’s Faculty of Life Sciences.

“In order for them to work, these proteins have to be transported to the right place and it is this process – of fundamental importance to all living organisms – that we are interested in.”

Dr Pool’s work – to be published in the highly respected journal Science – is based on a 30-year-old hypothesis of how proteins are transported across cell membranes and directed to their correct location.

That hypothesis was devised and proven by Dr Gunter Blobel and led to him receiving the Nobel Prize in Physiology or Medicine in 1999.

But the Anglo-German team has taken Dr Blobel’s investigations a step further as they have been able to physically see the processes at work using sophisticated electron microscopes.

“Previous work had provided a framework of how the system worked but we were limited to models and cartoons of how it might look and actually function,” said Dr Pool.

“Visualising the structure using a technique called cryo-electron microscopy has confirmed that many of the earlier proposals of the model were in fact correct.

“This process occurs in all cells, although our work has concentrated on mammalian pancreatic cells.

“Understanding how these specialised secretary cells release insulin is of great significance and might be important in understanding why this process goes wrong in type-2 diabetes.”

Aeron Haworth | alfa
Further information:
http://www.manchester.ac.uk

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>