Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Insulin research builds on Nobel Laureate’s work

Scientists have seen for the first time a key step in the complex molecular processes whereby pancreas cells release insulin into the bloodstream.

The breakthrough, which builds on earlier Nobel-Prize winning research, could have implications for the treatment of diabetes which is caused when not enough insulin is released by the pancreas to meet the body’s demands.

The team of scientists from the University of Manchester, Charite University in Berlin, and the University of Heidelberg say the findings could also be important in understanding other diseases, as hormone and protein secretion is an important function of all types of cell.

“Large numbers of proteins, including hormones such as insulin, are constantly being produced by our cells and carry out essential functions in the body,” explained Dr Martin Pool, based in Manchester’s Faculty of Life Sciences.

“In order for them to work, these proteins have to be transported to the right place and it is this process – of fundamental importance to all living organisms – that we are interested in.”

Dr Pool’s work – to be published in the highly respected journal Science – is based on a 30-year-old hypothesis of how proteins are transported across cell membranes and directed to their correct location.

That hypothesis was devised and proven by Dr Gunter Blobel and led to him receiving the Nobel Prize in Physiology or Medicine in 1999.

But the Anglo-German team has taken Dr Blobel’s investigations a step further as they have been able to physically see the processes at work using sophisticated electron microscopes.

“Previous work had provided a framework of how the system worked but we were limited to models and cartoons of how it might look and actually function,” said Dr Pool.

“Visualising the structure using a technique called cryo-electron microscopy has confirmed that many of the earlier proposals of the model were in fact correct.

“This process occurs in all cells, although our work has concentrated on mammalian pancreatic cells.

“Understanding how these specialised secretary cells release insulin is of great significance and might be important in understanding why this process goes wrong in type-2 diabetes.”

Aeron Haworth | alfa
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>