Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Expanding waistlines triggered by your genes

05.05.2006


A gene that degrades the body’s collagen infrastructure has been shown to make fat cells fatter and expand girth.

Excess fat is stored in white adipose tissue, the primary energy depot in the body, primarily around the midsection. The gene studied by a University of Michigan team acts as a metabolic scissors, cutting through the collagen tissue matrix that holds fat in place, which allows fat cells to expand beneath the belly.

The collaborative research team, headed by researchers Tae-Hwa Chun, Stephen Weiss, and Alan Saltiel at U-M’s Life Sciences Institute (LSI), discovered that the gene membrane-type 1 matrix metalloproteinase (MT1-MMP) shears the collagen meshwork that holds fat cells in place and frees expanding fat cells, allowing their spread and expansion underneath the skin. The study illustrates a relationship between the gene and obesity and metabolism.



The MT1-MMP gene is specifically important in regulation of fat cell size and metabolic gene expression. When the gene function was deleted, mice became skinny. The fat tissues around their bellies were very small, but the brown adipose tissue, a specialized fat depot to regulate body energy consumption, was unaffected.

Importantly, the research team also discovered that adipocyte differentiation in conventional two-dimensional (2-D) cell culture is different from three-dimensional (3-D) microenvironment taking place inside the complex body. In regular 2-D culture system, the MT1-MMP gene was not necessary, but it becomes a critical metabolic scissors once cells are inside 3-D environment either in collagen gel or in the real tissue of mouse. This finding may fill a gap between conventional 2-D cell biology and 3-D tissue function.

These findings shed new light on adipocyte biology and possibly will provide novel therapeutics to prevent the progression of obesity. The researchers will continue to work on the cellular mechanism of obesity and metabolic diseases from the perspective of 3-D cell biology.

Robin Stephenson | EurekAlert!
Further information:
http://www.lsi.umich.edu
http://www.umich.edu

More articles from Life Sciences:

nachricht Separate brain systems cooperate during learning, study finds
22.02.2018 | Brown University

nachricht Maelstroms in the heart
22.02.2018 | Max-Planck-Institut für Dynamik und Selbstorganisation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Decoding the structure of the huntingtin protein

22.02.2018 | Life Sciences

Camera technology in vehicles: Low-latency image data compression

22.02.2018 | Information Technology

Minimising risks of transplants

22.02.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>