Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tequila! Chemists help assure quality of popular Mexican beverage

05.05.2006


Whether you’re celebrating Cinco de Mayo or just having another relaxing day in Margaritaville, you might one day thank a chemist for assuring the authenticity of your tequila. New tests developed by scientists in Mexico and Germany will help distinguish the real thing from fraudulent versions, which are a potential threat as this alcoholic beverage grows in popularity.



The findings could help provide a "shot" of quality assurance to the estimated billion-dollar tequila market, the researchers say. Their study is scheduled to appear in the June 14 issue of the American Chemical Society’s Journal of Agricultural and Food Chemistry.

But there’s no reason for consumers to panic, the researchers say. "Tequila is one of the best regulated spirits in the world with strict Mexican standards and labeling regulations," says study leader Dirk Lachenmeier, Ph.D., a chemist with Chemisches und Veterinäruntersuchungsamt Karlsruhe (Chemical and Veterinary Investigation Laboratory of Karlsruhe) in Germany. Thanks to advancements in chemistry, the quality of this ancient Mexican beverage can now be protected.


Tequila is made from the blue Agave plant and its production is limited to certain geographic areas, primarily to the state of Jalisco in West-Central Mexico. Although it is subject to strict production standards and labeling regulations, adulterated samples have occasionally been reported, the researchers say. The exact percentage of fraudulent samples on the market is unknown, they add.

High-quality tequila is made with 100 percent Agave, while lower-end, mixed tequila is made by adding up to 49 percent sugar prior to fermentation. This so-called mixed-tequila is usually shipped out in bulk containers for bottling in the importing countries. Labeling fraud can result when these bulk tequilas are identified as "100 % Agave" or if alcohol from other sources is added. These practices are more likely to take place when these products are bottled in other countries outside the strict regulatory watch of the Mexican government, Lachenmeier says.

Using ion and gas chromatography, scientists analyzed 31 tequila samples of the 100 percent Agave category and compared the results to 25 mixed-tequila samples. The pure Agave tended to have significantly higher levels of certain chemicals, including methanol, 2-methyl-1-butanol, and 2-phenylethanol, allowing them to be chemically distinguished as real, high-quality tequila, the researchers say. Although methanol was present, levels were small and did not reach toxic levels, they add.

In addition to these new tests, a screening test using Fourier Transform Infrared Spectroscopy (FTIR) may be used to identify fake tequilas from the real thing, the researchers say. The process, also known as molecular fingerprinting, takes only two minutes, they say. In general, the strategy of combining different spectroscopic and chromatographic methods is more accurate than previous identification attempts, which focused on other chemicals or the isotopic composition found in tequila, the researchers say.

The researchers also analyzed several other Mexican spirits made from Agave, including mezcal (the one with the worm in it), sotol and bacanora. With the exception of mezcal, the scientists were similarly able to identify the other spirits by their distinctive chemical profile, a finding that could also aid in quality control efforts among the other Agave spirits, they say.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>