Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tequila! Chemists help assure quality of popular Mexican beverage

05.05.2006


Whether you’re celebrating Cinco de Mayo or just having another relaxing day in Margaritaville, you might one day thank a chemist for assuring the authenticity of your tequila. New tests developed by scientists in Mexico and Germany will help distinguish the real thing from fraudulent versions, which are a potential threat as this alcoholic beverage grows in popularity.



The findings could help provide a "shot" of quality assurance to the estimated billion-dollar tequila market, the researchers say. Their study is scheduled to appear in the June 14 issue of the American Chemical Society’s Journal of Agricultural and Food Chemistry.

But there’s no reason for consumers to panic, the researchers say. "Tequila is one of the best regulated spirits in the world with strict Mexican standards and labeling regulations," says study leader Dirk Lachenmeier, Ph.D., a chemist with Chemisches und Veterinäruntersuchungsamt Karlsruhe (Chemical and Veterinary Investigation Laboratory of Karlsruhe) in Germany. Thanks to advancements in chemistry, the quality of this ancient Mexican beverage can now be protected.


Tequila is made from the blue Agave plant and its production is limited to certain geographic areas, primarily to the state of Jalisco in West-Central Mexico. Although it is subject to strict production standards and labeling regulations, adulterated samples have occasionally been reported, the researchers say. The exact percentage of fraudulent samples on the market is unknown, they add.

High-quality tequila is made with 100 percent Agave, while lower-end, mixed tequila is made by adding up to 49 percent sugar prior to fermentation. This so-called mixed-tequila is usually shipped out in bulk containers for bottling in the importing countries. Labeling fraud can result when these bulk tequilas are identified as "100 % Agave" or if alcohol from other sources is added. These practices are more likely to take place when these products are bottled in other countries outside the strict regulatory watch of the Mexican government, Lachenmeier says.

Using ion and gas chromatography, scientists analyzed 31 tequila samples of the 100 percent Agave category and compared the results to 25 mixed-tequila samples. The pure Agave tended to have significantly higher levels of certain chemicals, including methanol, 2-methyl-1-butanol, and 2-phenylethanol, allowing them to be chemically distinguished as real, high-quality tequila, the researchers say. Although methanol was present, levels were small and did not reach toxic levels, they add.

In addition to these new tests, a screening test using Fourier Transform Infrared Spectroscopy (FTIR) may be used to identify fake tequilas from the real thing, the researchers say. The process, also known as molecular fingerprinting, takes only two minutes, they say. In general, the strategy of combining different spectroscopic and chromatographic methods is more accurate than previous identification attempts, which focused on other chemicals or the isotopic composition found in tequila, the researchers say.

The researchers also analyzed several other Mexican spirits made from Agave, including mezcal (the one with the worm in it), sotol and bacanora. With the exception of mezcal, the scientists were similarly able to identify the other spirits by their distinctive chemical profile, a finding that could also aid in quality control efforts among the other Agave spirits, they say.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>