Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tequila! Chemists help assure quality of popular Mexican beverage

05.05.2006


Whether you’re celebrating Cinco de Mayo or just having another relaxing day in Margaritaville, you might one day thank a chemist for assuring the authenticity of your tequila. New tests developed by scientists in Mexico and Germany will help distinguish the real thing from fraudulent versions, which are a potential threat as this alcoholic beverage grows in popularity.



The findings could help provide a "shot" of quality assurance to the estimated billion-dollar tequila market, the researchers say. Their study is scheduled to appear in the June 14 issue of the American Chemical Society’s Journal of Agricultural and Food Chemistry.

But there’s no reason for consumers to panic, the researchers say. "Tequila is one of the best regulated spirits in the world with strict Mexican standards and labeling regulations," says study leader Dirk Lachenmeier, Ph.D., a chemist with Chemisches und Veterinäruntersuchungsamt Karlsruhe (Chemical and Veterinary Investigation Laboratory of Karlsruhe) in Germany. Thanks to advancements in chemistry, the quality of this ancient Mexican beverage can now be protected.


Tequila is made from the blue Agave plant and its production is limited to certain geographic areas, primarily to the state of Jalisco in West-Central Mexico. Although it is subject to strict production standards and labeling regulations, adulterated samples have occasionally been reported, the researchers say. The exact percentage of fraudulent samples on the market is unknown, they add.

High-quality tequila is made with 100 percent Agave, while lower-end, mixed tequila is made by adding up to 49 percent sugar prior to fermentation. This so-called mixed-tequila is usually shipped out in bulk containers for bottling in the importing countries. Labeling fraud can result when these bulk tequilas are identified as "100 % Agave" or if alcohol from other sources is added. These practices are more likely to take place when these products are bottled in other countries outside the strict regulatory watch of the Mexican government, Lachenmeier says.

Using ion and gas chromatography, scientists analyzed 31 tequila samples of the 100 percent Agave category and compared the results to 25 mixed-tequila samples. The pure Agave tended to have significantly higher levels of certain chemicals, including methanol, 2-methyl-1-butanol, and 2-phenylethanol, allowing them to be chemically distinguished as real, high-quality tequila, the researchers say. Although methanol was present, levels were small and did not reach toxic levels, they add.

In addition to these new tests, a screening test using Fourier Transform Infrared Spectroscopy (FTIR) may be used to identify fake tequilas from the real thing, the researchers say. The process, also known as molecular fingerprinting, takes only two minutes, they say. In general, the strategy of combining different spectroscopic and chromatographic methods is more accurate than previous identification attempts, which focused on other chemicals or the isotopic composition found in tequila, the researchers say.

The researchers also analyzed several other Mexican spirits made from Agave, including mezcal (the one with the worm in it), sotol and bacanora. With the exception of mezcal, the scientists were similarly able to identify the other spirits by their distinctive chemical profile, a finding that could also aid in quality control efforts among the other Agave spirits, they say.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>