Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers of the university of Seville identify a gene that allows fungus to react to light

05.05.2006


Professor Luis Corrochano Peláez, from the Genetics Department of the University of Seville, and his PhD student Julio Rodríguez Romero, in collaboration with researchers of the Duke University of USA and the University of Salamanca, have identified a gene that allows Phycomyces fungus to react to light and orientate their growth toward it. Results will be published in the prestigious journal “Proceedings of the National Academy of Sciences USA” next week. These researches are part of the scientific activity of the Genetics Department of the University of Seville, which has a long-standing tradition in basic research and research applied to the genetics of microorganisms.



Phycomyces blakesleeanus fungus is used in labs to research into the mechanisms that allow living creatures to relate to their environment. The fruiting body of the Phycomyces is sensitive to several environmental stimulus, such us the light, gravity, wind and the presence of close obstacles that modify the speed and direction of its growth. Like plants, Phycomyces grows in the direction of light, against gravity.

In the 1960’s, Nobel prize-winner Max Delbrück started in his lab, in the California Institute of Technology, to search for night-blind mutants of Phycomyces whose fruiting bodies could not move toward the light. These mutants were called mad in honour to Max Delbrück, whose birth centenary is this year, and were used to research into the mechanisms responsible for sight.


However, the identity of the genes altered in mad mutants was unknown until now. Genetics experts from Seville University, in collaboration with their colleagues from Salamanca and the USA, have succeeded in identifying the altered gene in one of the mad mutants and in describing their product.

The product of madA gene is a protein that can be linked to DNA and a compound, flavin, which absorbs blue light and allows it to act as a photoreceptor and activator of genes at the same time. There are similar proteins in other type of fungus, although Phycomyces contains two genes of this type. This could explain its great sensibility to light, similar to that of the human eye. These proteins share with a group of proteins of plants, the phototropins, the union spot of the compound that absorbs the light. This means that fungus and plants can use a similar mechanism to grow toward the light.

The identification of the nature of madA gene puts an end to a story that began in Delbrück’s lab about forty years ago and will be used to understand better the mechanisms that regulate the responses of microbes to environmental changes. The completed Phycomyces genome sequence, which is expected to be known next year, will be very useful to reach these objectives.

Ismael Gaona | alfa
Further information:
http://www.andaluciainvestiga.com

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>