Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers of the university of Seville identify a gene that allows fungus to react to light

05.05.2006


Professor Luis Corrochano Peláez, from the Genetics Department of the University of Seville, and his PhD student Julio Rodríguez Romero, in collaboration with researchers of the Duke University of USA and the University of Salamanca, have identified a gene that allows Phycomyces fungus to react to light and orientate their growth toward it. Results will be published in the prestigious journal “Proceedings of the National Academy of Sciences USA” next week. These researches are part of the scientific activity of the Genetics Department of the University of Seville, which has a long-standing tradition in basic research and research applied to the genetics of microorganisms.



Phycomyces blakesleeanus fungus is used in labs to research into the mechanisms that allow living creatures to relate to their environment. The fruiting body of the Phycomyces is sensitive to several environmental stimulus, such us the light, gravity, wind and the presence of close obstacles that modify the speed and direction of its growth. Like plants, Phycomyces grows in the direction of light, against gravity.

In the 1960’s, Nobel prize-winner Max Delbrück started in his lab, in the California Institute of Technology, to search for night-blind mutants of Phycomyces whose fruiting bodies could not move toward the light. These mutants were called mad in honour to Max Delbrück, whose birth centenary is this year, and were used to research into the mechanisms responsible for sight.


However, the identity of the genes altered in mad mutants was unknown until now. Genetics experts from Seville University, in collaboration with their colleagues from Salamanca and the USA, have succeeded in identifying the altered gene in one of the mad mutants and in describing their product.

The product of madA gene is a protein that can be linked to DNA and a compound, flavin, which absorbs blue light and allows it to act as a photoreceptor and activator of genes at the same time. There are similar proteins in other type of fungus, although Phycomyces contains two genes of this type. This could explain its great sensibility to light, similar to that of the human eye. These proteins share with a group of proteins of plants, the phototropins, the union spot of the compound that absorbs the light. This means that fungus and plants can use a similar mechanism to grow toward the light.

The identification of the nature of madA gene puts an end to a story that began in Delbrück’s lab about forty years ago and will be used to understand better the mechanisms that regulate the responses of microbes to environmental changes. The completed Phycomyces genome sequence, which is expected to be known next year, will be very useful to reach these objectives.

Ismael Gaona | alfa
Further information:
http://www.andaluciainvestiga.com

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>