Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Targeted virus compels cancer cells to eat themselves

04.05.2006
Malignant glioma cells in mice die by autophagy

An engineered virus tracks down and infects the most common and deadly form of brain cancer and then kills tumor cells by forcing them to devour themselves, researchers at The University of Texas M. D. Anderson Cancer Center report this week in the Journal of the National Cancer Institute.

The modified adenovirus homed in on malignant glioma cells in mice and induced enough self-cannibalization among the cancer cells -- a process called autophagy -- to reduce tumor size and extend survival, says senior author Seiji Kondo, M.D., Ph.D., associate professor in the Department of Neurosurgery at M. D. Anderson.

’’This virus uses telomerase, an enzyme found in 80 percent of brain tumors, as a target,’’ Kondo says. ’’Once the virus enters the cell, it needs telomerase to replicate. Normal brain tissue does not have telomerase, so this virus replicates only in cancer cells.’’

Other cancers are telomerase-positive, and the researchers showed in lab experiments that the virus kills human prostate and human cervical cancer cells while sparing normal tissue.

In addition to demonstrating the therapeutic potential of the virus, called hTERT-Ad, Kondo says the international research team also clarified the mechanism by which such conditionally replicating adenoviruses (CRAs) infect and kill cancer cells.

Autophagy is a protective process that cells employ to consume part of themselves when nutrients are scarce or to destroy some of their organelles to recycle their components. A double membrane forms around the material to be consumed, then everything inside is digested.

Kondo and colleagues showed that hTERT-Ad (short for human telomerase reverse transcriptase promoter regulated adenovirus) infected the glioma cells and induced autophagy by inactivating a molecular pathway -- the mammalian target of rapamycin (mTOR) pathway -- that is known to prevent cellular self-cannibalization.

The result was a huge difference in tumor volume among mice with subcutaneous malignant glioma that got hTERT-Ad and those that received a different, non-replicating virus. Average tumor size in the hTERT-Ad group was 39 cubic millimeters, while those receiving the other virus had an average tumor volume of 200 cubic millimeters.

Among mice with malignant gliomas in the brain, those treated with three injections of hTERT-Ad on average lived 53 days. Those receiving the control adenoviruses lived on average 29 days. Two of the hTERT-Ad mice survived 60 days and had no detectable brain tumors.

Analyses of dead cancer cells showed telltale signs of autophagy: bits of virus in the cell nucleus and autophagic vacuoles -- cavities with residual digested material.

The cells showed no sign of having been killed by apoptosis -- a much better known process of programmed cell death. A normal biological defense mechanism that systematically kills defective cells, apoptosis is suppressed or dysfunctional in cancer cells. Many cancer therapies focus on restoring or enhancing apoptosis to combat the disease.

’’We believe that autophagy, but not apoptosis, mediates the principal anti-tumor effect of conditionally replicating adenoviruses,’’ Kondo says.

Cells killed by apoptosis show specific damage to the cell nucleus and DNA, with other cellular organelles preserved, Kondo explains. Cells killed by autophagy have little damage to the nucleus but heavy degradation of the cells’ organelles.

Apoptosis and autophagy should be viewed as type 1 and type 2 versions of programmed cell death, Kondo says. In a Nature Reviews Cancer paper last September, Kondo and colleagues reviewed therapies and molecules that cause or inhibit the self-cannibalization process and compared autophagy and apoptosis, which has been more heavily studied.

To improve cancer therapeutics, Kondo and colleagues concluded that it is vital to identify molecules that regulate autophagy in cancer cells and to understand how autophagy is associated with cell death, a relatively new field in cancer research.

The research group is following up the malignant glioma findings by studying ways to improve the efficiency of viral infection of cancer cells.

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>