Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Targeted virus compels cancer cells to eat themselves

Malignant glioma cells in mice die by autophagy

An engineered virus tracks down and infects the most common and deadly form of brain cancer and then kills tumor cells by forcing them to devour themselves, researchers at The University of Texas M. D. Anderson Cancer Center report this week in the Journal of the National Cancer Institute.

The modified adenovirus homed in on malignant glioma cells in mice and induced enough self-cannibalization among the cancer cells -- a process called autophagy -- to reduce tumor size and extend survival, says senior author Seiji Kondo, M.D., Ph.D., associate professor in the Department of Neurosurgery at M. D. Anderson.

’’This virus uses telomerase, an enzyme found in 80 percent of brain tumors, as a target,’’ Kondo says. ’’Once the virus enters the cell, it needs telomerase to replicate. Normal brain tissue does not have telomerase, so this virus replicates only in cancer cells.’’

Other cancers are telomerase-positive, and the researchers showed in lab experiments that the virus kills human prostate and human cervical cancer cells while sparing normal tissue.

In addition to demonstrating the therapeutic potential of the virus, called hTERT-Ad, Kondo says the international research team also clarified the mechanism by which such conditionally replicating adenoviruses (CRAs) infect and kill cancer cells.

Autophagy is a protective process that cells employ to consume part of themselves when nutrients are scarce or to destroy some of their organelles to recycle their components. A double membrane forms around the material to be consumed, then everything inside is digested.

Kondo and colleagues showed that hTERT-Ad (short for human telomerase reverse transcriptase promoter regulated adenovirus) infected the glioma cells and induced autophagy by inactivating a molecular pathway -- the mammalian target of rapamycin (mTOR) pathway -- that is known to prevent cellular self-cannibalization.

The result was a huge difference in tumor volume among mice with subcutaneous malignant glioma that got hTERT-Ad and those that received a different, non-replicating virus. Average tumor size in the hTERT-Ad group was 39 cubic millimeters, while those receiving the other virus had an average tumor volume of 200 cubic millimeters.

Among mice with malignant gliomas in the brain, those treated with three injections of hTERT-Ad on average lived 53 days. Those receiving the control adenoviruses lived on average 29 days. Two of the hTERT-Ad mice survived 60 days and had no detectable brain tumors.

Analyses of dead cancer cells showed telltale signs of autophagy: bits of virus in the cell nucleus and autophagic vacuoles -- cavities with residual digested material.

The cells showed no sign of having been killed by apoptosis -- a much better known process of programmed cell death. A normal biological defense mechanism that systematically kills defective cells, apoptosis is suppressed or dysfunctional in cancer cells. Many cancer therapies focus on restoring or enhancing apoptosis to combat the disease.

’’We believe that autophagy, but not apoptosis, mediates the principal anti-tumor effect of conditionally replicating adenoviruses,’’ Kondo says.

Cells killed by apoptosis show specific damage to the cell nucleus and DNA, with other cellular organelles preserved, Kondo explains. Cells killed by autophagy have little damage to the nucleus but heavy degradation of the cells’ organelles.

Apoptosis and autophagy should be viewed as type 1 and type 2 versions of programmed cell death, Kondo says. In a Nature Reviews Cancer paper last September, Kondo and colleagues reviewed therapies and molecules that cause or inhibit the self-cannibalization process and compared autophagy and apoptosis, which has been more heavily studied.

To improve cancer therapeutics, Kondo and colleagues concluded that it is vital to identify molecules that regulate autophagy in cancer cells and to understand how autophagy is associated with cell death, a relatively new field in cancer research.

The research group is following up the malignant glioma findings by studying ways to improve the efficiency of viral infection of cancer cells.

Scott Merville | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Make way for the mini flying machines
21.03.2018 | American Chemical Society

nachricht New 4-D printer could reshape the world we live in
21.03.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>