Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


St. Jude test of bird flu vaccine proves successful

A commercially developed vaccine has successfully protected mice and ferrets against a highly lethal avian influenza virus, according to the investigator who led the study at St. Jude Children’s Research Hospital. The vaccine was developed by Vical Incorporated in San Diego, California.

This finding, coupled with results of previous studies that showed protection against multiple human influenza strains, suggests that such a vaccine would protect humans against multiple variants of the bird and human influenza viruses, according to Richard Webby, Ph.D., assistant member of Infectious Diseases at St. Jude. Such a vaccine could protect humans against an H5N1 "bird flu" virus that mutates so that it adapts to humans and can readily spread from person to person, Webby said. Flu experts and public health officials fear that such an H5N1 variant would trigger a human pandemic (worldwide epidemic).

Webby is scheduled to present the findings of this study at the U.S. Public Health Service Professional Conference in Denver, Colo., May 3 at 12:30 pm EDT.

The investigators used two versions of Vical’s multi-component, DNA-based vaccine in the studies. One vaccine was directed against three viral proteins: NP and M2, which are "conserved" proteins that generally do not mutate quickly and therefore, are slow to avoid immune responses triggered by the vaccine; and H5, a "variable" protein on the surface of the bird and human flu viruses that is critical to their ability to infect cells. This variable protein is known to mutate readily, thereby foiling previous immune responses it triggered--whether due to natural exposure or vaccination. The other version of the vaccine contained only the two conserved viral proteins.

In the St. Jude study, the full, three-component vaccine (H5, NP and M2) provided complete protection in mice against lethal challenges with a highly virulent (Vietnam/1203/2004) H5N1 avian influenza virus. Moreover, other studies showed that a smaller version of the vaccine containing only the NP and M2 components provided significant protection against several strains of human influenza virus as well as the H5N1 "bird flu" strain.

"Such cross-protection against bird and human influenza is considered by researchers to be the ’Holy Grail’ of flu vaccines," Webby said. "By stimulating immune responses against targets not likely to mutate, the vaccine could trigger an immune defense against a broad range of variants of the virus.

"Even if the bird flu virus mutates so it becomes adapted to humans, this kind of cross protection will allow the immune system to track and attack such an emerging new variant without missing a beat," Webby said. "We wouldn’t have to wait to start developing a vaccine against it until after the original virus mutated."

Webby’s team showed that all mice and ferrets that received the DNA vaccine survived the challenge with the virulent H5N1 strain, while those that received a "blank" vaccine control did not survive. The vaccine also prevented weight loss in all animals challenged with the virulent virus, suggesting that the vaccine might also protect humans against serious flu-related sickness.

The studies included 16 mice or six ferrets in each vaccine or control group. The DNA vaccines targeted NP and M2--with and without the H5 avian influenza virus surface protein. All test DNA vaccines were formulated with the company’s VaxfectinTM adjuvant. An adjuvant is an additive administered with a vaccine that has little effect by itself, but improves the response of the immune system to the vaccine.

Carrie Strehlau | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>