UCSB researchers discover new biotechnology to identify and engineer substrates for proteases

Researchers at UC Santa Barbara have developed a new biotechnology that enables scientists to identify and engineer protease substrates, giving them the means of crafting pharmaceuticals to outsmart disease. Their work, authored by Patrick Daugherty, an assistant professor of Chemical Engineering, and Kevin Boulware, a PhD candidate, are published online today in the Proceedings of the National Academy of Sciences.

Proteases (or peptidases) are encoded by about two percent of genes in the human genome and play key roles in nearly all diseases. They act as “molecular scissors” by attaching to specific sequences contained within other proteins, called substrates, and cutting them in specific locations. For example, proteases are responsible for digesting food, for determining the proper time for cells to die, and for removing damaged proteins from the body.

But the substrates for most proteases are unknown, and this has limited researchers’ ability to facilitate or thwart protease action. By identifying substrates, scientists gain the ability to regulate protein function, creating the capacity to speed up, slow down or eliminate particular protease actions. Daugherty’s approach also makes it easier to measure protease action and thus develop pharmaceuticals that control protease activity.

Daugherty and Boulware developed a general combinatorial approach to identify optimal substrates of proteases, using quantitative kinetic screening of cellular libraries of peptide substrates (CLiPS). The results suggest that CLiPS will be broadly useful for characterizing proteases and developing optimal substrates for therapeutic applications.

Of the roughly 1,000 proteases in the human genome, only about ten percent of the targets have been identified, but Daugherty believes that scientists will identify nearly all of them in the next five to ten years. “This technology will give us a scalable tool that will allow us to effectively tackle this challenge,” he says.

Media Contact

Barbara B. Gray EurekAlert!

More Information:

http://www.ucsb.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors