Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Imaging Study Produces Genetic Brain Maps

08.11.2001


Scientists are finally beginning to understand how common genetic differences among individuals underlie differences in the structures that make up their brains. In the first attempt to actually map these variations, neurologist Paul Thompson and colleagues at the University of California at Los Angeles have discovered that brain structures related to cognitive ability and language seem to be under tight genetic control. The group’s findings, which could help explain how diseases like schizophrenia are passed on, will appear in a report in the December issue of Nature Neuroscience.



To construct their so-called genetic brain maps, the researchers scanned the brains of 20 sets of twins (ten fraternal and ten identical) with magnetic resonance imaging and combined the results to construct an average brain map for each kind of twin. In the brain map of identical twins pictured at the right, for example, brain areas exhibiting more variation appear in blue, whereas those showing less variation are red. These pairs of twins showed almost no differences in the amounts of gray matter in the frontal, sensory-motor and language-related parts of their cortexes. Fraternal twins, who share half of each other’s genes, showed more variation in these structures than did identical twins and less than unrelated individuals did, suggesting that "some areas of the brain are under tight genetic control—language in particular," Thompson explains. This genetic control may also extend partly to cognitive ability: study participants with more gray matter in the front of their brains scored higher on a common test designed to measure Spearman’s g, which is similar to IQ. "But this is quite a mild correlation," Thompson says. "You can’t predict an individual’s IQ from a brain scan, and I think that’s quite a relief."

The kind of brain mapping employed in this study could help scientists determine why dementias such as schizophrenia, which affects the frontal cortex, are often passed down between generations. By "building a mosaic, or jigsaw, which shows each individual part of the brain and to what extent genes influence it," Thompson says, "we can begin to point to why there’s an inherited risk to brain disease."—

JR Minkel | Scientific American
Further information:
http://www.sciam.com/news/110701/1.html

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Novel 3-D printing technique yields high-performance composites

16.01.2018 | Materials Sciences

New application for acoustics helps estimate marine life populations

16.01.2018 | Life Sciences

Fast-tracking T cell therapies with immune-mimicking biomaterials

16.01.2018 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>