Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Imaging Study Produces Genetic Brain Maps

08.11.2001


Scientists are finally beginning to understand how common genetic differences among individuals underlie differences in the structures that make up their brains. In the first attempt to actually map these variations, neurologist Paul Thompson and colleagues at the University of California at Los Angeles have discovered that brain structures related to cognitive ability and language seem to be under tight genetic control. The group’s findings, which could help explain how diseases like schizophrenia are passed on, will appear in a report in the December issue of Nature Neuroscience.



To construct their so-called genetic brain maps, the researchers scanned the brains of 20 sets of twins (ten fraternal and ten identical) with magnetic resonance imaging and combined the results to construct an average brain map for each kind of twin. In the brain map of identical twins pictured at the right, for example, brain areas exhibiting more variation appear in blue, whereas those showing less variation are red. These pairs of twins showed almost no differences in the amounts of gray matter in the frontal, sensory-motor and language-related parts of their cortexes. Fraternal twins, who share half of each other’s genes, showed more variation in these structures than did identical twins and less than unrelated individuals did, suggesting that "some areas of the brain are under tight genetic control—language in particular," Thompson explains. This genetic control may also extend partly to cognitive ability: study participants with more gray matter in the front of their brains scored higher on a common test designed to measure Spearman’s g, which is similar to IQ. "But this is quite a mild correlation," Thompson says. "You can’t predict an individual’s IQ from a brain scan, and I think that’s quite a relief."

The kind of brain mapping employed in this study could help scientists determine why dementias such as schizophrenia, which affects the frontal cortex, are often passed down between generations. By "building a mosaic, or jigsaw, which shows each individual part of the brain and to what extent genes influence it," Thompson says, "we can begin to point to why there’s an inherited risk to brain disease."—

JR Minkel | Scientific American
Further information:
http://www.sciam.com/news/110701/1.html

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>