Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Imaging Study Produces Genetic Brain Maps

08.11.2001


Scientists are finally beginning to understand how common genetic differences among individuals underlie differences in the structures that make up their brains. In the first attempt to actually map these variations, neurologist Paul Thompson and colleagues at the University of California at Los Angeles have discovered that brain structures related to cognitive ability and language seem to be under tight genetic control. The group’s findings, which could help explain how diseases like schizophrenia are passed on, will appear in a report in the December issue of Nature Neuroscience.



To construct their so-called genetic brain maps, the researchers scanned the brains of 20 sets of twins (ten fraternal and ten identical) with magnetic resonance imaging and combined the results to construct an average brain map for each kind of twin. In the brain map of identical twins pictured at the right, for example, brain areas exhibiting more variation appear in blue, whereas those showing less variation are red. These pairs of twins showed almost no differences in the amounts of gray matter in the frontal, sensory-motor and language-related parts of their cortexes. Fraternal twins, who share half of each other’s genes, showed more variation in these structures than did identical twins and less than unrelated individuals did, suggesting that "some areas of the brain are under tight genetic control—language in particular," Thompson explains. This genetic control may also extend partly to cognitive ability: study participants with more gray matter in the front of their brains scored higher on a common test designed to measure Spearman’s g, which is similar to IQ. "But this is quite a mild correlation," Thompson says. "You can’t predict an individual’s IQ from a brain scan, and I think that’s quite a relief."

The kind of brain mapping employed in this study could help scientists determine why dementias such as schizophrenia, which affects the frontal cortex, are often passed down between generations. By "building a mosaic, or jigsaw, which shows each individual part of the brain and to what extent genes influence it," Thompson says, "we can begin to point to why there’s an inherited risk to brain disease."—

JR Minkel | Scientific American
Further information:
http://www.sciam.com/news/110701/1.html

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>