Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protowings may have helped bird ancestors cover rough terrain

02.05.2006
Even wings that are still in development help living birds gain traction on slopes and scale obstacles

Biologists have long argued about how birds evolved the ability to fly, because it is not immediately evident what improvement in fitness would result from ancestral, partly evolved wings. Two theories have recently dominated the debate: one postulates that flight evolved in tree-dwelling ancestors that used their forelimbs to help them glide, while the other considers ancestral birds to be terrestrial dinosaurs that developed powered flight from the ground up.

An article by Kenneth P. Dial and two co-authors in the May 2006 issue of BioScience summarizes experimental evidence indicating that ancestral protobirds incapable of flight could have used their protowings to improve hindlimb traction and thus better navigate steep slopes and obstructions. By using their protowings in this way, they would presumably have had an advantage when pursuing prey and escaping from predators.

Dial and colleagues performed experiments on several species of juvenile galliform (chicken-like) birds, concentrating on chukar partridges. Chukars can run 12 hours after hatching, but they cannot fly until they are about a week old. Even before they are able to fly, however, the birds flap their developing wings in a characteristic way while running, which improves their ability to climb steep slopes and even vertical surfaces. Dial and colleagues have named this form of locomotion "wing-assisted Iincline running" (WAIR). After they are able to fly, chukars often use WAIR in preference to flying to gain elevated terrain, and exhausted birds always resort to WAIR.

Dial and colleagues describe experiments showing that if the surface area of chukar wings is reduced by plucking or trimming the feathers, WAIR becomes less effective for climbing slopes. Dial and colleagues propose that incipiently feathered forelimbs of bipedal protobirds may have provided the same advantages for incline running as have now been demonstrated in living juvenile birds. Their work thus supports a new theory about the evolution of flight in birds. WAIR, which the authors believe to be widespread in birds, appears to offer an answer to the question first posed by St. George Jackson Mivart in 1871: "What use is half a wing?"

Donna Royston | EurekAlert!
Further information:
http://www.aibs.org

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>