Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protowings may have helped bird ancestors cover rough terrain

02.05.2006
Even wings that are still in development help living birds gain traction on slopes and scale obstacles

Biologists have long argued about how birds evolved the ability to fly, because it is not immediately evident what improvement in fitness would result from ancestral, partly evolved wings. Two theories have recently dominated the debate: one postulates that flight evolved in tree-dwelling ancestors that used their forelimbs to help them glide, while the other considers ancestral birds to be terrestrial dinosaurs that developed powered flight from the ground up.

An article by Kenneth P. Dial and two co-authors in the May 2006 issue of BioScience summarizes experimental evidence indicating that ancestral protobirds incapable of flight could have used their protowings to improve hindlimb traction and thus better navigate steep slopes and obstructions. By using their protowings in this way, they would presumably have had an advantage when pursuing prey and escaping from predators.

Dial and colleagues performed experiments on several species of juvenile galliform (chicken-like) birds, concentrating on chukar partridges. Chukars can run 12 hours after hatching, but they cannot fly until they are about a week old. Even before they are able to fly, however, the birds flap their developing wings in a characteristic way while running, which improves their ability to climb steep slopes and even vertical surfaces. Dial and colleagues have named this form of locomotion "wing-assisted Iincline running" (WAIR). After they are able to fly, chukars often use WAIR in preference to flying to gain elevated terrain, and exhausted birds always resort to WAIR.

Dial and colleagues describe experiments showing that if the surface area of chukar wings is reduced by plucking or trimming the feathers, WAIR becomes less effective for climbing slopes. Dial and colleagues propose that incipiently feathered forelimbs of bipedal protobirds may have provided the same advantages for incline running as have now been demonstrated in living juvenile birds. Their work thus supports a new theory about the evolution of flight in birds. WAIR, which the authors believe to be widespread in birds, appears to offer an answer to the question first posed by St. George Jackson Mivart in 1871: "What use is half a wing?"

Donna Royston | EurekAlert!
Further information:
http://www.aibs.org

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>