Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Whole-genome study at Johns Hopkins reveals a new gene associated with abnormal heart rhythm

02.05.2006
Heart rhythm disturbances are target for preventive treatment.

Using a new genomic strategy that has the power to survey the entire human genome and identify genes with common variants that contribute to complex diseases, researchers at Johns Hopkins, together with scientists from Munich, Germany, and the Framingham Heart Study, U.S.A., have identified a gene that may predispose some people to abnormal heart rhythms that lead to sudden cardiac death, a condition affecting more than 300 thousand Americans each year.

The gene called NOS1AP, not previously flagged by or suspected from more traditional gene-hunting approaches, appears to influence significantly one particular risk factor - the so-called QT interval length - for sudden cardiac death. The work will be published online at Nature Genetics on April 30.

"In addition to finding a genetic variant that could be of clinical value for sudden cardiac death, this study also demonstrates how valuable large-scale genomics studies can be in detecting novel biological targets," says the study’s senior author, Aravinda Chakravarti, Ph.D., director of the McKusick-Nathans Institute for Genetic Medicine at Hopkins. "This study, conducted during the early days of a new technology, would have been impossible without the pioneering support of the D.W. Reynolds Foundation in their generous support of our clinical program in sudden cardiac death here at Hopkins."

QT interval measures the period of time it takes the heart to recover from the ventricular beat - when the two bottom chambers of the heart pump. Corresponding to the "lub" part of the "lub-dub" pattern of the heartbeat, an individual’s QT interval remains constant. This interval is partly dependent on one’s genetic constitution and, moreover, genes also play a role in sudden cardiac death.

"There’s a great deal of evidence out there that having a too long or too short QT interval is a risk factor for sudden cardiac death," says the study’s co-first author, Dan Arking, Ph.D., an instructor in the McKusick-Nathans Institute. "This makes it appealing to study because it can be measured non-invasively with an EKG, and each person’s QT interval, in the absence of a major cardiovascular event, is stable over time, making it a reliable measure."

Identifying those at high risk for sudden cardiac death before fatalities occur has been challenging, both at the clinical and at the genetic level, says the study’s other first author, Arne Pfeufer, M.D., of the Institute of Human Genetics at the Technical University in Munich, Germany. Doctors estimate that in more than one third of all cases, sudden cardiac death is the first hint of heart disease. It is widely believed that many factors, genetic and environmental, contribute to irregular heartbeat and other conditions that may lead to sudden cardiac death. Being able to identify predisposed individuals can save their lives by prescribing beta-blockers and other drugs that regulate heart rhythm, and even by implanting automatic defibrillators in those with the highest risk.

In an effort to identify risk factors with a genetic foundation, the researchers took the unconventional approach of starting from scratch and not looking at genes already known or suspected to be involved in heart rhythm.

"Studying individual genes is not going to open new areas of research," says Chakravarti. "Using a whole-genome approach allows us to find new targets that we never would have imagined."

So instead of focusing on so-called candidate genes with known functions that are highly suspect in heart beat rhythm, the team first focused on people who have extremely long or short QT intervals. The researchers used subjects from two population-based studies, about 1800 American adults of European ancestry from the Framingham Heart Study of Framingham, Mass., and about 6,700 German adults from the KORA-gen study of Augsburg, Germany.

The research team then searched for any specific DNA sequences that showed up more frequently in people who have longer or shorter QT intervals than in those with normal QT intervals. To do this, they examined the DNA sequences of both long and short QT people. The human genome contains 3 billion letters, known as nucleotides. Each person’s genome differs from the next person’s by as many as 10 million nucleotides. The researchers looked for single nucleotide variations - known as single nucleotide polymorphisms, or SNPs for short - that track with having a long or short QT interval.

Only one particular SNP correlated with QT interval. That SNP was found near the NOS1AP gene, which has been studied for its function in nerve cells and was not previously suspected to play a role in heart function. However, the research team found that the NOS1AP gene is turned on in the left ventricle of the human heart. And the "lub" part of the "lub-dub" heartbeat corresponds to ventricular contraction. So NOS1AP is active in the right place and time to play a role in QT interval.

Further studies revealed that approximately 60 percent of people of European descent may carry at least one copy of this SNP in the NOS1AP gene. According to the researchers, this particular SNP is responsible for up to 1.5 percent of the difference in QT interval, meaning that other genes, missed in this study, certainly contribute to QT length.

Now that researchers know that variants of the NOS1AP gene correlate with QT interval length, they hope to figure out exactly how the DNA sequence variations alter the function of the gene, and how changes in gene function affects heart rhythm.

Audrey Huang | EurekAlert!
Further information:
http://www.jhmi.edu
http://www.nature.com/ng/index.html
http://www.hopkinsmedicine.org/geneticmedicine/index.html

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>