Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cell expansion and more

02.05.2006
More stem cells are better - expanding hematopoietic stem cells with HOXB4
Transplantation of hematopoietic stem cells (HSCs, the cells that can give rise to all blood and most immune cell types) can save patients whose own hematopoietic system is defective or has been destroyed (often through radiation or chemotherapy of cancer). HSCs are very rare, and it is often hard to obtain enough of them for a successful transplant.

To overcome this limitation, Hans-Peter Kiem and colleagues have developed a way to expand HSCs in the laboratory prior to transplantation. As they report in the international open-access journal PLoS Medicine, expression of a gene called HOXB4 can instruct stem cells to divide and make more stem cells. When the researchers tested those expanded cell populations in monkeys that had received a lethal dose of radiation, they found that they were better at reconstituting the monkeys’ immune and blood systems.

HSCs are found in small numbers in the bone marrow, the peripheral blood, and in cord blood, which is harvested from the umbilical cord at birth. Cord blood is increasingly being used for transplantation, but the low number of HSCs present in a unit of cord blood means that transplanted cells can be slow to establish themselves (or engraft) in an adult recipient, prolonging the time the patient is susceptible to infections. Consequently, researchers are looking for ways to expand HSCs prior to transplantation. HOXB4 is known to be involved in stem cell maintenance and had shown some promise for stem cell expansion in mice. To investigate the potential of HOXB4 treatment for HSC expansion before transplantation in humans, Kiem and colleagues therefore turned to nonhuman primates, an established preclinical model for HSC transplantation and gene therapy.

The team showed that HOXB4 over-expression in populations of cells enriched for stem cells (i.e. those that are used for transplantation) for 6-9 days prior to transplantation greatly improved their subsequent engraftment in monkeys whose hematopoietic system had been destroyed through radiation. These results suggest that HOXB4-mediated expansion of stem cells could accelerate the engraftment of HSCs from sources that contain limited numbers of stem cells, such as cord blood. This was a proof-of-principle study that used small numbers of monkeys. Given the encouraging results, additional experiments are now planned to further test whether HOXB4 can eventually be used to improve the expansion and engraftment of stem cells in patients whose hematopoietic system has failed.

Kiem and colleagues achieved HOXB4 overexpression through introducing an active copy of the gene into the cells. However, because HOXB4 protein is available in recombinant form (i.e. produced in cell culture, much like human insulin), it should be possible to treat HSCs directly with the protein, avoiding the potential problems associated with genetic manipulation of the cells. As the reviewers of the article commented, such “clean expansion” of HSCs holds great potential for application in human transplant recipients.

Citation: Zhang XB, Beard BC, Beebe K, Storer B, Humphries RK, et al. (2006) Differential effects of HOXB4 on nonhuman primate short- and long-term repopulating cells. PLoS Med 3(5).

CONTACT:
Hans Peter Kiem
Fred Hutchinson Cancer Research Center
Clinical Research Division
Seattle, USA
+1 206-667-4425
+1 206-667-6124 (fax)
E-mail: hkiem@fhcrc.org

Seasonal childhood anaemia in West Africa is associated with the haptoglobin 2-2 genotype

In a study done in West Africa, Dr. Sarah Atkinson and colleagues from the London School of Hygiene and Tropical Medicine in London showed an association between a particular type of haptoglobin (Hp2-2) and anemia in children, in an area where malaria is very common. Haptoglobin is a protein that picks up the free hemoglobin which is released after red cells are damaged by malaria. This increased occurrence of anemia in these children may be because the particular type of haptoglobin, Hp2-2, is less able pick up the hemoglobin released from red cells. One suggested explanation of why this genetic variant remains in the population despite being associated with anemia is that it may provide protection from life-threatening malaria. In a related perspective, Stephen Rogerson from the Royal Melbourne Hospital discusses further the implications of the study.

Citation: Atkinson SH, Rockett K, Sirugo G, Bejon PA, Fulford A, et al (2006) Seasonal childhood anaemia in West Africa is associated with the haptoglobin 2-2 genotype. PLoS Med 3(5): e172.

CONTACT:
Sarah Atkinson
London School of Hygiene and Tropical Medicine
Nutrition and Public Health Intervention Unit
Keppel Street
London WC1E 7HT, United Kingdom
+44 (0)2079588140
+44 (0)2079588111 (fax)
satkinson@kilifi.mimcom.net

Related PLoS Medicine Perspective article:

Citation: Rogerson S (2006) What is the relationship between haptoglobin, malaria, and anaemia? PLoS Med 3(5): e200.

CONTACT:
Stephen Rogerson
Royal Melbourne Hospital
Parkville, Victoria 3052, Australia
+61 3 8344 3259
sroger@unimelb.edu.au

Andrew Hyde | alfa
Further information:
http://dx.doi.org/10.1371/journal.pmed.0030173
http://dx.doi.org/10.1371/journal.pmed.0030172
http://www.plosmedicine.org

More articles from Life Sciences:

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

nachricht German scientists question study about plastic-eating caterpillars
15.09.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

IVAM’s LaserForum visits the Swiss canton of St. Gallen with the topic ultrashort pulse lasers

06.09.2017 | Event News

 
Latest News

The Wadden Sea and the Elbe Studied with Zeppelin, Drones and Research Ships

19.09.2017 | Earth Sciences

Digging sensors out of an efficiency hole

19.09.2017 | Materials Sciences

Solar wind impacts on giant 'space hurricanes' may affect satellite safety

19.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>