Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wisconsin scientists discover a master key to microbes’ pathogenic lifestyles

28.04.2006
For some microbes, the transformation from a benign lifestyle in the soil to that of a potentially deadly human pathogen is just a breath away.

Inhaled into the lungs of a mammal, spores from a class of six related soil molds found around the world encounter a new, warmer environment. And as soon as they do, they rapidly shift gears and assume the guise of pathogenic yeast, causing such serious and sometimes deadly afflictions as blastomycosis and histoplasmosis.

But how these usually bucolic fungi undergo such a transformation to become serious pathogens has always been a puzzle. Now, however, a team of scientists from the University of Wisconsin School of Medicine and Public Health reports the discovery of a master molecular sensor embedded in the spores of the fungi that triggers the transformation. The finding is reported in the April 28 edition of the journal Science.

The discovery could lead to new treatments, and possibly vaccines for the diseases caused by these Jekyll and Hyde microbes, says Bruce Klein, a UW-Madison professor of pediatrics, internal medicine and medical microbiology and immunology, and the senior author of the new study.

"These microbes have to undergo an extreme makeover to survive in a host," says Klein, an authority on fungal diseases. "The million dollar question is was what controls this change? "

Klein and colleagues Julie C. Nemecek and Marcel Wuthrich identified a molecular sensor that is conserved in these six related dimorphic fungi found worldwide. The sensor, says Klein, is like an antenna situated in the membrane of the fungi’s spores. It senses temperature, and when a spore finds itself at a comfortable 37 degrees Celsius, the body temperature of a human or other animal, it kick starts a genetic program that transforms the fungi into pathogenic yeasts.

"This is a global regulator that sends signals down a molecular chain of command and governs a series of vital genetic programs," Klein explains. "It leads to changes in the organism’s metabolism, cell shape, cell wall composition, and changes in virulence gene expressions."

These changes, according to Klein, are really a survival program for the microbe, conferring resistance to the host’s immune responses.

The diseases caused by the fungi can be especially serious for immune compromised individuals, and some human populations seem to be more at risk for acquiring the infections. For example, U.S. soldiers who train in the American Southwest tend to be susceptible to coccidiomycosis because the organism that causes it is endemic to the region. One in three of those who train there acquire the disease, considered to be the second most common fungal infection in the United States. Of those infected, 25 percent contract pneumonia.

Histoplasmosis, a disease caused by the fungus Histoplasma capsulatum, infects as much as 80 percent of the population where the organism is endemic, including much of the eastern and central United States. It is also widespread in South America and Africa. In most instances, the infection prompts only mild symptoms. Untreated, however, it can be fatal. What’s more, the microbe can lay dormant in an infected host for years.

"All of these organisms exhibit this property of latency," says Klein. "They can remain dormant until immune defenses are lowered. It’s a significant medical problem in endemic regions."

The discovery of the switch that governs dimorphism and virulence in this prevalent class of fungi provides a target for new therapeutic agents and might even help underpin a vaccine able to thwart infection entirely, according to Klein.

"This could lead to therapeutics, better treatment for this class of diseases," Klein explains. "And with this finding, vaccines might now be possible. That’s a strategy with promise."

The discovery of a master switch in related but diverse and geographically widespread class of fungi is an indication that it was acquired from a common ancestor deep in evolutionary history. The feature is a common mechanism used by the different organisms to adapt to a new environment: the lungs of animals.

"It is a story of how organisms are challenged in a new environment," says Klein. "They have to make themselves over so they can survive."

Bruce Klein | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

nachricht Party discipline for jumping genes
22.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

Hope to discover sure signs of life on Mars? New research says look for the element vanadium

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>