Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wisconsin scientists discover a master key to microbes’ pathogenic lifestyles

28.04.2006
For some microbes, the transformation from a benign lifestyle in the soil to that of a potentially deadly human pathogen is just a breath away.

Inhaled into the lungs of a mammal, spores from a class of six related soil molds found around the world encounter a new, warmer environment. And as soon as they do, they rapidly shift gears and assume the guise of pathogenic yeast, causing such serious and sometimes deadly afflictions as blastomycosis and histoplasmosis.

But how these usually bucolic fungi undergo such a transformation to become serious pathogens has always been a puzzle. Now, however, a team of scientists from the University of Wisconsin School of Medicine and Public Health reports the discovery of a master molecular sensor embedded in the spores of the fungi that triggers the transformation. The finding is reported in the April 28 edition of the journal Science.

The discovery could lead to new treatments, and possibly vaccines for the diseases caused by these Jekyll and Hyde microbes, says Bruce Klein, a UW-Madison professor of pediatrics, internal medicine and medical microbiology and immunology, and the senior author of the new study.

"These microbes have to undergo an extreme makeover to survive in a host," says Klein, an authority on fungal diseases. "The million dollar question is was what controls this change? "

Klein and colleagues Julie C. Nemecek and Marcel Wuthrich identified a molecular sensor that is conserved in these six related dimorphic fungi found worldwide. The sensor, says Klein, is like an antenna situated in the membrane of the fungi’s spores. It senses temperature, and when a spore finds itself at a comfortable 37 degrees Celsius, the body temperature of a human or other animal, it kick starts a genetic program that transforms the fungi into pathogenic yeasts.

"This is a global regulator that sends signals down a molecular chain of command and governs a series of vital genetic programs," Klein explains. "It leads to changes in the organism’s metabolism, cell shape, cell wall composition, and changes in virulence gene expressions."

These changes, according to Klein, are really a survival program for the microbe, conferring resistance to the host’s immune responses.

The diseases caused by the fungi can be especially serious for immune compromised individuals, and some human populations seem to be more at risk for acquiring the infections. For example, U.S. soldiers who train in the American Southwest tend to be susceptible to coccidiomycosis because the organism that causes it is endemic to the region. One in three of those who train there acquire the disease, considered to be the second most common fungal infection in the United States. Of those infected, 25 percent contract pneumonia.

Histoplasmosis, a disease caused by the fungus Histoplasma capsulatum, infects as much as 80 percent of the population where the organism is endemic, including much of the eastern and central United States. It is also widespread in South America and Africa. In most instances, the infection prompts only mild symptoms. Untreated, however, it can be fatal. What’s more, the microbe can lay dormant in an infected host for years.

"All of these organisms exhibit this property of latency," says Klein. "They can remain dormant until immune defenses are lowered. It’s a significant medical problem in endemic regions."

The discovery of the switch that governs dimorphism and virulence in this prevalent class of fungi provides a target for new therapeutic agents and might even help underpin a vaccine able to thwart infection entirely, according to Klein.

"This could lead to therapeutics, better treatment for this class of diseases," Klein explains. "And with this finding, vaccines might now be possible. That’s a strategy with promise."

The discovery of a master switch in related but diverse and geographically widespread class of fungi is an indication that it was acquired from a common ancestor deep in evolutionary history. The feature is a common mechanism used by the different organisms to adapt to a new environment: the lungs of animals.

"It is a story of how organisms are challenged in a new environment," says Klein. "They have to make themselves over so they can survive."

Bruce Klein | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>