Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene needed for butterfly transformation also key for insects like grasshoppers

28.04.2006
It is a marvel of nature that a creature such as a caterpillar changes into something quite different, a butterfly. Contrast that with a grasshopper, which looks largely the same from the time it hatches through its adult stage.

New University of Washington research shows that a regulatory gene named broad, known to be necessary for development of insects that undergo complete metamorphosis, also is key for the maturation of insects that have incomplete metamorphosis. The work appears to present the first molecular evidence that the nymphal stage in lower insects is equivalent to the pupal, or chrysalis, stage of advanced insects such as butterflies.


An insect in the fourth nymphal stage of development (Figure A) progresses normally to the fifth development stage (Figure B). However, if a gene called broad is suppressed in the first half of the fourth stage, the nymph moves to the fifth stage but keeps pigmentation patterns and other characteristics of the fourth stage (Figure C). Credit: Photo credit: Deniz Erezyilmaz

Metamorphosis evolved in insects about 300 million years ago from ancestors of direct-developing insects such as grasshoppers. Biologists know the broad gene regulates metamorphosis in flies and moths and is found only at the transition between their larval and pupal stages. To understand how metamorphosis evolved in insects, the UW researchers examined how the broad gene functions in direct-developing insects, which don’t have a pupal stage.

"We found that it is expressed throughout the nymphal stages, and that it is also required for change," said Deniz Erezyilmaz, a UW biology research associate. "So it looks like metamorphosis evolved in insects by restricting the expression of the broad gene to a short but intense period of change at the transition from larva to pupa."

Normally an insect like the grasshopper that does not undergo complete metamorphosis goes through subtle physical changes during each of its nymphal stages as it progresses to adulthood. If broad is suppressed, the nymph simply repeats the appearance from its previous phase but continues to show normal growth, Erezyilmaz said. The organism eventually becomes an adult, but adult structures such as the wings are severely undersized.

"Broad is not required to transform into the adult, but it is needed to move through the series of nymphal stages," she said. "An insect should look different from one stage to the next, but if you remove broad it doesn’t."

Erezyilmaz is the lead author of a paper describing the findings, published online Tuesday in the Proceedings of the National Academy of Sciences. The work was done in the UW laboratories of biology professors James Truman and Lynn Riddiford, who are co-authors of the paper, and was underwritten by grants from the National Science Foundation and the National Institutes of Health.

Genes regulate how an organism grows and changes physically as it develops. The broad gene encodes a protein that attaches itself to a specific region of a DNA chain and controls which other genes will be copied. The researchers suspect that broad must be present for the physical changes contained in those areas of DNA to be expressed. Suppressing broad prevents the changes from occurring.

"Humans don’t have the broad gene, but if they did and you suppressed it you’d have a baby that might grow to 6 feet tall but would still have the body proportions of a baby," Truman said. "It would still have the large head and the stubby legs."

A substance called juvenile hormone is present at each step of nymph development in insects that do not experience complete metamorphosis, and the researchers found that juvenile hormone correlates with the expression of the broad gene during the nymphal stage. Juvenile hormone disappears in the last nymphal stage and the broad gene is no longer expressed, allowing the insect to make the final transition to adulthood.

"This is the first time that anyone has seen the broad gene appear in the development of insects having incomplete metamorphosis," said Riddiford. "It appears in the late embryonic stage and stays throughout nymphal life, then disappears when the insect transforms to an adult."

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>