Marijuana-like compounds suppress the immune response

The cannabinoids are a group of chemicals that include marijuana. These compounds bind to and activate the body’s cannabinoid receptors. There are two types of cannabinoid receptor: the peripheral cannabinoid receptor (CB2) which is predominantly found in immune cells, and the central cannabinoid receptor (CB1) which occurs in the central nervous system.

Recent studies have suggested that CB2 may be involved in a wide range of physiologic phenomena related to immunity, although research on this function is still at an early stage. Among the possible immunological roles for CB2 is an involvement in the initiation of white blood cell migration to sites of infection and inflammation.

In the Journal of Biological Chemistry study, which was featured as a “Paper of the Week”, Yumi Tohyama and colleagues used an in vitro model of blood cell migration to study the involvement of CB2 in the recruitment white blood cells. They found that treating the blood cells with compounds that bind to CB2 suppresses the migration of the cells. When they examined the cells, they discovered that they had lost their ability to develop a front/rear polarity, which is something they need to effectively migrate to sites of infection and inflammation.

Because cannabinoids seem to suppress activated white blood cells, Tohyama believes they could have a potential use in the treatment of inflammatory diseases.

Media Contact

Nicole Kresge EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors