Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neurons, smarter than believed

27.04.2006
The neurons in the central nervous system (CNS) are reported to have a previously unknown ability to regulate the immune system and suppress inflammatory conditions of the CNS.

This was published by scientists at Lund University in Sweden in an article in the journal of Nature Medicine. This pioneering discovery paves the way for future therapeutic targets for inflammatory and degenerative diseases of CNS like multiple sclerosis (MS), Alzheimer’s, and Parkinson’s.

It is generally known that motor neurons regulate basic functions like movement, learning, and memory. But Swedish scientists are now able to show that the neurons are also capable of combating CNS inflammation.

The role of neurons in the regulation of immune response in the CNS has been neglected as brain and spinal cord are well protected against immune cells surveillance by a tight barrier and because neurons do not express molecules known to be involved in immune response.

"Now, we show that motor neurons are capable of actively regulating immune response and indeed they have a central role in prevention of CNS inflammation", says Associate Professor Shohreh Issazadeh-Navikas at Lund University.

In this report, Swedish scientists have demonstrated that neurons can transmit signals to harmful T cells (a type of white blood cells important for immune defense) in the brain. These signals cause these T cells to alter their function, transforming them from harmful to benign T cells that counteract inflammation and neuronal cell death.

Pathogenic T cells can enter the CNS because of several reasons such as during viral infection of CNS, as a result of mechanical damage to CNS or inflammatory diseases of CNS or autoimmune reactions, for example in case of MS (an inflammatory disease of CNS believed to be caused by autoimmune T cells). Inflammation is now implicated to be involved also in other neurodegenerative diseases such as Alzheimer’s and Parkinson’s.

The impetus for this research work came from previous observations made by Shohreh Issazadeh-Navikas at the Karolinska Institute and at Harvard Medical School. There she found in different experimental conditions that neurons appeared to be able to secrete certain immunological proteins that could have potential to combat inflammations.

"These observations indicated that neurons could actually play a role in the regulation of the immune cells causing CNS inflammation. This was a new concept that had virtually been unexplored, since it was believed that neurons were mainly targets of inflammatory attack rather than active player in its regulation."

Dedicated work by a research team under supervision of Shohreh Issazadeh-Navikas at Lund University in collaboration with Dr. Bryndis Birnir resulted in the current pioneering publication in the Nature Medicine.

According to Shohreh Issazadeh-Navikas, their findings provide new knowledge about how chronic inflammation of the brain is regulated, and it could have implications for novel therapeutic approaches of inflammatory and neurodegenerative diseases such as Alzheimer, Parkinson and MS.

Ingela Björck | alfa
Further information:
http://www.lu.se

More articles from Life Sciences:

nachricht Research team creates new possibilities for medicine and materials sciences
22.01.2018 | Humboldt-Universität zu Berlin

nachricht Saarland University bioinformaticians compute gene sequences inherited from each parent
22.01.2018 | Universität des Saarlandes

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>