Neurons, smarter than believed

This was published by scientists at Lund University in Sweden in an article in the journal of Nature Medicine. This pioneering discovery paves the way for future therapeutic targets for inflammatory and degenerative diseases of CNS like multiple sclerosis (MS), Alzheimer’s, and Parkinson’s.

It is generally known that motor neurons regulate basic functions like movement, learning, and memory. But Swedish scientists are now able to show that the neurons are also capable of combating CNS inflammation.

The role of neurons in the regulation of immune response in the CNS has been neglected as brain and spinal cord are well protected against immune cells surveillance by a tight barrier and because neurons do not express molecules known to be involved in immune response.

“Now, we show that motor neurons are capable of actively regulating immune response and indeed they have a central role in prevention of CNS inflammation”, says Associate Professor Shohreh Issazadeh-Navikas at Lund University.

In this report, Swedish scientists have demonstrated that neurons can transmit signals to harmful T cells (a type of white blood cells important for immune defense) in the brain. These signals cause these T cells to alter their function, transforming them from harmful to benign T cells that counteract inflammation and neuronal cell death.

Pathogenic T cells can enter the CNS because of several reasons such as during viral infection of CNS, as a result of mechanical damage to CNS or inflammatory diseases of CNS or autoimmune reactions, for example in case of MS (an inflammatory disease of CNS believed to be caused by autoimmune T cells). Inflammation is now implicated to be involved also in other neurodegenerative diseases such as Alzheimer’s and Parkinson’s.

The impetus for this research work came from previous observations made by Shohreh Issazadeh-Navikas at the Karolinska Institute and at Harvard Medical School. There she found in different experimental conditions that neurons appeared to be able to secrete certain immunological proteins that could have potential to combat inflammations.

“These observations indicated that neurons could actually play a role in the regulation of the immune cells causing CNS inflammation. This was a new concept that had virtually been unexplored, since it was believed that neurons were mainly targets of inflammatory attack rather than active player in its regulation.”

Dedicated work by a research team under supervision of Shohreh Issazadeh-Navikas at Lund University in collaboration with Dr. Bryndis Birnir resulted in the current pioneering publication in the Nature Medicine.

According to Shohreh Issazadeh-Navikas, their findings provide new knowledge about how chronic inflammation of the brain is regulated, and it could have implications for novel therapeutic approaches of inflammatory and neurodegenerative diseases such as Alzheimer, Parkinson and MS.

Media Contact

Ingela Björck alfa

More Information:

http://www.lu.se

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors