Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene Variant Protects Against Type 2 Diabetes, Heart Disease, and Hypertriglyceridemia

26.04.2006
A rare gene variant in humans helps to protect against two of the country’s top killers -- type 2 diabetes and heart disease -- as well as against hypertriglyceridemia, a condition that increases the risk of heart disease, obesity, and pancreatitis. A team of researchers from Harvard School of Public Health (HSPH) and the Channing Laboratory published their findings in this week’s issue of the Proceedings of the National Academy of Sciences.

Individuals who had the gene variant had 12 percent lower levels of triglycerides in their blood serum than subjects who did not have the variant. Risk of heart disease was 34 percent lower for those with the variant. Risk for type 2 diabetes was 48 percent lower among obese individuals when compared to other obese individuals who did not have the variant.

"This is a perfect example of the interdisciplinary studies between population sciences, nutrition, and basic scientists at HSPH," said Gökhan Hotamisligil, a senior author and James Stevens Simmons Professor of Genetics and Metabolism. The lead author was HSPH Research Associate Gurol Tuncman.

The gene was first identified in mouse studies as a mediator of metabolic disease. Mice that lack this gene, which encodes for a lipid-binding protein called aP2, were partially resistant to type 2 diabetes and exhibited strong protection against atherosclerosis. The HSPH and Channing team -- representing scientific contributions from five separate research groups -- investigated whether the same held true in humans. They reviewed the medical and genetic records and studied the genetic material of 7,899 participants in the Nurses’ Health Study and the Health Professionals Follow-Up Study. Of the group, 4.3 percent had the variant.

The team utilized molecular and cellular techniques in fat cells as well as in human fat tissue samples. They found that the variant T-87C, which sits on the promoter region of the gene that produces the aP2 protein, interferes with the gene and results in less production of aP2 in individuals that carry this variant.

"In other words, this genetic variant in humans looked like a milder version of the mouse knockout model," said Eric Rimm, HSPH Associate Professor of Epidemiology and Nutrition. In the U.S., more than 65 percent of adults and 16 percent of children are overweight. Nearly 24 percent of adults have metabolic syndrome, a constellation of conditions that includes obesity, insulin resistance, and hypertension.

The identification of the T-87C variant indicates that aP2 might play a similar role in humans as it does in mice. The significance of this finding may include a potential target for drugs designed to reduce aP2 levels, offering a possible means to protect against some of the world’s most prevalent chronic diseases, say the authors.

This work was supported in part by grants from the Iacocca Foundation, NIH, and American Diabetes Association. Samples used from the Nurses’ Health Study and Health Professionals Follow-Up Study were supported by NIH grants. Lead author Gurol Tuncman is a recipient of a postdoctoral fellowship from the Iacocca Foundation to conduct this interdisciplinary project and was supervised by both Rimm and Hotamisligil.

Contact:
Christina Roache
croache@hsph.harvard.edu
(617) 432-6052
Harvard School of Public Health
677 Huntington Avenue Boston, MA 02115

Christina Roache | EurekAlert!
Further information:
http://www.hsph.harvard.edu

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>