Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene Variant Protects Against Type 2 Diabetes, Heart Disease, and Hypertriglyceridemia

26.04.2006
A rare gene variant in humans helps to protect against two of the country’s top killers -- type 2 diabetes and heart disease -- as well as against hypertriglyceridemia, a condition that increases the risk of heart disease, obesity, and pancreatitis. A team of researchers from Harvard School of Public Health (HSPH) and the Channing Laboratory published their findings in this week’s issue of the Proceedings of the National Academy of Sciences.

Individuals who had the gene variant had 12 percent lower levels of triglycerides in their blood serum than subjects who did not have the variant. Risk of heart disease was 34 percent lower for those with the variant. Risk for type 2 diabetes was 48 percent lower among obese individuals when compared to other obese individuals who did not have the variant.

"This is a perfect example of the interdisciplinary studies between population sciences, nutrition, and basic scientists at HSPH," said Gökhan Hotamisligil, a senior author and James Stevens Simmons Professor of Genetics and Metabolism. The lead author was HSPH Research Associate Gurol Tuncman.

The gene was first identified in mouse studies as a mediator of metabolic disease. Mice that lack this gene, which encodes for a lipid-binding protein called aP2, were partially resistant to type 2 diabetes and exhibited strong protection against atherosclerosis. The HSPH and Channing team -- representing scientific contributions from five separate research groups -- investigated whether the same held true in humans. They reviewed the medical and genetic records and studied the genetic material of 7,899 participants in the Nurses’ Health Study and the Health Professionals Follow-Up Study. Of the group, 4.3 percent had the variant.

The team utilized molecular and cellular techniques in fat cells as well as in human fat tissue samples. They found that the variant T-87C, which sits on the promoter region of the gene that produces the aP2 protein, interferes with the gene and results in less production of aP2 in individuals that carry this variant.

"In other words, this genetic variant in humans looked like a milder version of the mouse knockout model," said Eric Rimm, HSPH Associate Professor of Epidemiology and Nutrition. In the U.S., more than 65 percent of adults and 16 percent of children are overweight. Nearly 24 percent of adults have metabolic syndrome, a constellation of conditions that includes obesity, insulin resistance, and hypertension.

The identification of the T-87C variant indicates that aP2 might play a similar role in humans as it does in mice. The significance of this finding may include a potential target for drugs designed to reduce aP2 levels, offering a possible means to protect against some of the world’s most prevalent chronic diseases, say the authors.

This work was supported in part by grants from the Iacocca Foundation, NIH, and American Diabetes Association. Samples used from the Nurses’ Health Study and Health Professionals Follow-Up Study were supported by NIH grants. Lead author Gurol Tuncman is a recipient of a postdoctoral fellowship from the Iacocca Foundation to conduct this interdisciplinary project and was supervised by both Rimm and Hotamisligil.

Contact:
Christina Roache
croache@hsph.harvard.edu
(617) 432-6052
Harvard School of Public Health
677 Huntington Avenue Boston, MA 02115

Christina Roache | EurekAlert!
Further information:
http://www.hsph.harvard.edu

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>