Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA conclusive yet still controversial

26.04.2006
Although the odds that DNA evidence found at a crime scene will match by chance the DNA of a person who was not there are infinitesimal, controversy continues about DNA identification and its use in criminal investigations, says Carnegie Mellon University Statistics Professor Kathryn Roeder. Roeder will present a historical overview of the use of DNA identification on Tuesday, April 25, during the Annual Symposia of the National Academy of Sciences in Washington, D.C.

Almost 28,000 cases nationwide have been prosecuted with help from the FBI’s data bank of DNA profiles, while at least 170 people have seen their convictions overturned on appeal thanks to DNA evidence. Nonetheless, the use of DNA evidence in appeals has been impeded by political considerations and legal uncertainties, according to Roeder. "After all other legal avenues have been tried, the hope of any innocent person is that biological evidence from their cases still exists and can be subjected to DNA testing. But DNA’s value to free the wrongfully convicted can be attained only if political leaders allow its full application," Roeder said. "Thousands currently await the evaluation of their cases."

In the early phases, technical disputes among scientists impeded the use of DNA evidence, Roeder said. One of the earliest controversies to erupt over DNA testing was the magnitude of genetic diversity among people of different ancestry.

Some controversy remains concerning the so-called "cold hit" technique, in which investigators search a DNA database to find a match of DNA found at a crime scene and then collect other evidence to build their case -- as opposed to first identifying a suspect through other evidence and then using DNA to confirm their case. Some critics claimed that this practice could snag an innocent person, but Roeder has demonstrated through her own research that the likelihood of a false hit are miniscule -- in one case, for example, it was about 1 in 26 quintillion, a probability so slight it needn’t be shared with juries, Roeder said.

"The jury can’t handle such small numbers. We would do them a service to simply tell them it matches or it doesn’t match," Roeder said.

Roeder began her career as a biologist, and much of her current research is focused on using statistical tools to understand the workings of the human genome and the nature of inherited diseases. She is a member of the Bioinformatics and Statistics Genetics Group, which includes researchers in the departments of Statistics and Biological Sciences at Carnegie Mellon, and the departments of Psychiatry and Human Genetics at the University of Pittsburgh. The group’s primary research goal is to develop statistical tools for finding associations between patterns of genetic variation and complex disease.

Jonathan Potts | EurekAlert!
Further information:
http://www.cmu.edu

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

NASA Protects its super heroes from space weather

17.08.2017 | Physics and Astronomy

Spray-on electric rainbows: Making safer electrochromic inks

17.08.2017 | Materials Sciences

Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

17.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>