Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Blocking key protein reduces inflammatory markers in metabolic syndrome

Findings shed light on mechanism of condition associated with heart disease, type 2 diabetes

Researchers from Massachusetts General Hospital (MGH) have shown, for the first time, that blocking the action of a critical protein can improve multiple inflammatory pathways in patients with the metabolic syndrome – a cluster of symptoms associated with increased risk of cardiovascular disease and type 2 diabetes. If supported in future studies, the findings may suggest new strategies for improving the cardiovascular risk in patients with the metabolic syndrome. This preliminary report appears in the April 24 Archives of Internal Medicine.

"This proof of principle sheds light on the physiology of inflammation and its relation to cardiac risk in obese patients," says Steven Grinspoon, MD, of the MGH Program in Nutritional Metabolism and Neuroendocrine Unit, the report’s senior author. "And it’s the first study of the medication etanercept, currently prescribed to treat arthritis and psoriasis, used in patients with the metabolic syndrome."

Metabolic syndrome is a group of symptoms that includes abdominal obesity, high triglycerides and LDL ("bad") cholesterol along with low HDL ("good") cholesterol, insulin resistance or glucose intolerance, and abnormal levels of several inflammatory proteins. The occurrence of the syndrome is increasing, and it is estimated to affect more than 50 million Americans currently. Also called insulin resistance syndrome, metabolic syndrome increases the risk of heart attack, stroke and other cardiovascular disorders, as well as type 2 diabetes. While there are many questions about the mechanism behind metabolic syndrome, current evidence suggests that inflammatory proteins released by abdominal fat may be an underlying cause of the increased cardiovascular risk.

One of the key inflammatory proteins released by fat cells is tumor necrosis factor (TNF), which is known to increase insulin resistance and the production of other inflammatory markers. Etanercept, marketed under the brand name Enbrel, treats several inflammatory disorders by blocking the action of TNF. The current study was designed to see whether using the drug might also reduce the inflammatory effects of metabolic syndrome, as measured by levels of C-reactive protein (CRP), which also has been associated with increased risk of cardiovascular disease.

The researchers enrolled 56 patients ages 37 to 54 who met standard criteria for metabolic syndrome but did not have diabetes, cardiovascular disease or any other inflammatory disorder. Half of them received weekly injections of etanercept and half received a placebo during the four-week study period. On each weekly visit, participants also had a physical examination and blood tests for levels of glucose, insulin and various markers including CRP.

At the end of the study period the CRP levels of participants who received etanercept were 34 percent lower than those of participants receiving the placebo. Levels of Interleukin-6 and fibrinogen, other inflammatory factors associated with increased cardiovascular risk, were also reduced in those who received the active medication; but levels of adiponectin – a factor that reflects reduced inflammation – had increased, also suggesting lower risk. No significant side effects were reported.

"It has been speculated that blocking TNF could reduce systemic inflammation in abdominally obese people, and we are very excited that giving this drug had such a dramatic effect on these major markers," Grinspoon says. "We were surprised that it didn’t also affect insulin resistance, but that could be because the study was only four weeks long. We’re planning longer term studies to get a more complete picture of how this strategy might someday be used to reduce the risks associated with metabolic syndrome." Grinspoon is an associate professor of Medicine at Harvard Medical School.

Sue McGreevey | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>