Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly discovered protein kills anthrax bacteria by exploding their cell walls

25.04.2006
Not all biological weapons are created equal. They are separated into categories A through C, category A biological agents being the scariest: They are easy to spread, kill effectively and call for special actions by the pubic health system. One of these worrisome organisms is anthrax, which has already received its fair share of media attention. But work in Vince Fischetti’s laboratory at Rockefeller University suggests that a newly discovered protein could be used to fight anthrax infections and even decontaminate areas in which anthrax spores have been released.

“Anthrax is the most efficient biowarfare agent. Its spores are stable and easy to produce, and once someone inhales them, there is only a 48-hour window when antibiotics can be used,” says Fischetti. “We’ve found a new protein that could both potentially expand that treatment window and be used as a large-scale decontaminant of anthrax spores.” Because anthrax spores are resistant to most of the chemicals that emergency workers rely on to sterilize contaminated areas, a solution based on the protein would be a powerful tool for cleaning up after an anthrax attack.


A bacterium’s final gasp. A bacillus bacterium, a close relative of anthrax, begins to explode after being treated with PlyPH. The PlyPH protein, discovered by Rockefeller scientists, offers several advantages over existing anthrax treatments.

All bacteria, anthrax included, have natural predators called bacteriophage. Just as viruses infect people, bacteriophage infect bacteria, reproduce, and then kill their host cell by bursting out to find their next target. The bacteriophage use special proteins, called lysins, to bore holes in the bacteria, causing them to literally explode. Fischetti and colleagues identified one of these lysins, called PlyG, in 2004, and showed that it could be used to help treat animals and humans infected by anthrax. Now, they have identified a second lysin, which they have named PlyPH, with special properties that make it not only a good therapeutic agent, but also useful for large-scale decontamination of areas like buildings and military equipment.

The new protein has several advantages. Most lysins, including PlyG, are only active in a very specific pH range of six to seven, so that they work very effectively in our bloodstream, but may not useful in many environmental conditions. “PlyPH works in an extremely wide pH range, from as low as four to as high as eight,” says Fischetti. “I don’t know of any other lytic enzyme that has such a broad range of activity.”

In addition, PlyPH, like PlyG, is highly specific in terms of the types of bacteria it affects. When Fischetti and colleagues added PlyPH to different bacterial species, only the anthrax bacteria were killed. This is a great benefit over antibiotics, which kill many different kinds of bacteria, including many helpful species. Because it is so specific, the chances of anthrax becoming resistant to PlyPH, as it is to many of the antibiotics currently available to treat it, are extremely low.

“We have never seen bacterial resistance to a lysin,” says Fischetti. “PlyPH and PlyG are probably the most specific lysins we, or anyone, has ever identified — they only kill anthrax and its very close relatives. This feature, and the wide pH range offered by PlyPH, is why we think it could be used as an environmental decontaminant.”

Fischetti hopes to combine PlyPH with a non-toxic aqueous substance developed by a group in California that will germinate any anthrax spores it comes in contact with. As the spores germinate, the PlyPH protein will kill them, usually in a matter of minutes. The combined solution could be used in buildings, on transportation equipment, on clothing, even on skin, providing a safe, easy way to fight the spread of anthrax in the event of a mass release.

Journal of Bacteriology 188(7): 2711-2714 (April 2006)

Kristine Kelly | EurekAlert!
Further information:
http://www.rockefeller.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>