Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method to analyse the Major Histocompatibility Complex (MHC) of the human genome

25.04.2006
Scientists at Fred Hutchinson Cancer Research Center have developed a new method for analyzing the Major Histocompatibility Complex (MHC) of the human genome. This large region, found on chromosome 6, encodes more than 400 known genes. The best known of these genes are the HLA genes that govern tissue type and participate in the immune system by protecting people from infection or by governing susceptibility to autoimmune diseases or cancer.

The researchers’ new lab method is described in the paper "Long-range Multi-locus Haplotype Phasing of the MHC" which was published today (April 21) in the early edition of the Proceedings of the National Academy of Sciences. The paper will appear in the May 2 print edition. The method may have the potential of being an efficient way to map genes in the MHC that are responsible for many human diseases, and might also be useful in studying other gene complexes that have a lot of variability.

The senior and corresponding author is Effie Petersdorf, M.D., member of the Clinical Research Division. Fellow researchers are Zhen Guo, Ph.D., and Mari Malkki, Ph.D., of the Clinical Research Division; and Dr. Leroy Hood of Seattle’s Institute for Systems Biology.

The MHC is one of the most diverse regions of the human genome, and its diversity is thought to have been shaped by widely varying evolutionary forces. Many of its genes are ancient and may have remained unchanged throughout human evolution.

The MHC also governs the degree of people’s acceptance or rejection of transplanted organs or bone marrow transplants. Identical twins, for example, have identical MHC genes and therefore can receive transplants from each other without risk of rejection. The MHC also is likely to govern many as yet unknown functions in the human body.

Segments of MHC are almost always inherited as an entire block, called a haplotype, a word that means "single unit," rather than as separate genes. Haplotypes may be one of the genetic reasons behind complex diseases that are not associated with just one gene or one genetic mutation, but with sets of genes.

About a year ago, an international collaboration of scientists produced a haplotype map of the human genome named the HapMap. The project was an effort to catalog genetic variation throughout the human genome, including the MHC region.

Family studies and statistical analysis are among the tools used to determine haplotypes. In addition, several laboratory methods have been developed to define haplotypes. However, these methods have limitations in studying the MHC because of its extensive diversity, the uneven distribution of its coding variation and the physical distances between genes within the MHC region.

"Population genetic epidemiology studies of unrelated individuals may lack family studies to definitely ascertain the physical linkage of genes or markers on haplotypes," Petersdorf said. "To address this need, we developed a method to link HLA genes across long distances of chromosome 6. This method provides haplotype information without a family study, and may be useful for mapping genes of the MHC that cause common diseases in large unrelated populations."

The researchers decided to work on a laboratory tool to study particular sections of the MHC, a choice that was motivated by the importance of these genes in disease studies, in anthropological research, and in the selection of potential donors for organ transplants or blood and marrow transplants. They wrote that it might be possible to expand their method to span the entire MHC, but this would require reconstructing the huge complex into several overlapping segments.

The new lab method, the researchers noted, could possibly fulfill an unmet need for tools to use in conducting genetic studies in populations of unrelated individuals. The researchers have applied for a U.S. non-provisional patent for their haplotyping method.

Dean Forbes | EurekAlert!
Further information:
http://www.fhcrc.org

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>