Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method to analyse the Major Histocompatibility Complex (MHC) of the human genome

25.04.2006
Scientists at Fred Hutchinson Cancer Research Center have developed a new method for analyzing the Major Histocompatibility Complex (MHC) of the human genome. This large region, found on chromosome 6, encodes more than 400 known genes. The best known of these genes are the HLA genes that govern tissue type and participate in the immune system by protecting people from infection or by governing susceptibility to autoimmune diseases or cancer.

The researchers’ new lab method is described in the paper "Long-range Multi-locus Haplotype Phasing of the MHC" which was published today (April 21) in the early edition of the Proceedings of the National Academy of Sciences. The paper will appear in the May 2 print edition. The method may have the potential of being an efficient way to map genes in the MHC that are responsible for many human diseases, and might also be useful in studying other gene complexes that have a lot of variability.

The senior and corresponding author is Effie Petersdorf, M.D., member of the Clinical Research Division. Fellow researchers are Zhen Guo, Ph.D., and Mari Malkki, Ph.D., of the Clinical Research Division; and Dr. Leroy Hood of Seattle’s Institute for Systems Biology.

The MHC is one of the most diverse regions of the human genome, and its diversity is thought to have been shaped by widely varying evolutionary forces. Many of its genes are ancient and may have remained unchanged throughout human evolution.

The MHC also governs the degree of people’s acceptance or rejection of transplanted organs or bone marrow transplants. Identical twins, for example, have identical MHC genes and therefore can receive transplants from each other without risk of rejection. The MHC also is likely to govern many as yet unknown functions in the human body.

Segments of MHC are almost always inherited as an entire block, called a haplotype, a word that means "single unit," rather than as separate genes. Haplotypes may be one of the genetic reasons behind complex diseases that are not associated with just one gene or one genetic mutation, but with sets of genes.

About a year ago, an international collaboration of scientists produced a haplotype map of the human genome named the HapMap. The project was an effort to catalog genetic variation throughout the human genome, including the MHC region.

Family studies and statistical analysis are among the tools used to determine haplotypes. In addition, several laboratory methods have been developed to define haplotypes. However, these methods have limitations in studying the MHC because of its extensive diversity, the uneven distribution of its coding variation and the physical distances between genes within the MHC region.

"Population genetic epidemiology studies of unrelated individuals may lack family studies to definitely ascertain the physical linkage of genes or markers on haplotypes," Petersdorf said. "To address this need, we developed a method to link HLA genes across long distances of chromosome 6. This method provides haplotype information without a family study, and may be useful for mapping genes of the MHC that cause common diseases in large unrelated populations."

The researchers decided to work on a laboratory tool to study particular sections of the MHC, a choice that was motivated by the importance of these genes in disease studies, in anthropological research, and in the selection of potential donors for organ transplants or blood and marrow transplants. They wrote that it might be possible to expand their method to span the entire MHC, but this would require reconstructing the huge complex into several overlapping segments.

The new lab method, the researchers noted, could possibly fulfill an unmet need for tools to use in conducting genetic studies in populations of unrelated individuals. The researchers have applied for a U.S. non-provisional patent for their haplotyping method.

Dean Forbes | EurekAlert!
Further information:
http://www.fhcrc.org

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>