Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lack of a key enzyme dramatically increases resistance to sepsis

25.04.2006
Findings could lead to new therapeutic approaches to a major disease
According to the new study, the presence of caspase-12, which appears to modulate inflammation and innate immunity in humans, increases the body’s "vulnerability to bacterial infection and septic shock" while a deficiency confers strong resistance to sepsis. This new discovery suggests that caspase-12 antagonists could be a potentially useful in the treatment of sepsis and other inflammatory and immune disorders.

The study was published in the April 20 edition of the journal Nature (Volume 440, Number 7087).

Richard Ulevitch, chair of the Scripps Research Immunology Department and an author of the paper, says, "The results of the study make clear that caspase-12 plays a critical role in the elimination of bacterial pathogens, and that a deficiency allows systemic and abdominal infections to be better resolved. It’s known that the presence of caspase-12 as a full length protein occurs in a small percentage of people of African descent. As a result, some of these individuals are far more susceptible to severe sepsis and have a significantly increased risk of dying from it."

Sepsis, the body’s inflammatory response to severe infection, is one of the leading causes of death in the United States, killing more than 200,000 people each year, according to the Society of Critical Care Medicine. A 2003 study by The Centers for Disease Control and Emory University School of Medicine showed that the incidence of sepsis in the United States has increased almost nine percent a year since 1979.

The new study showed that caspase-12 deficient mice were resistant to peritonitis and septic shock and were able to clear pathogenic bacteria more efficiently than mice with the enzyme. The presence of caspase-12 also reduced production of several pro-inflammatory cytokines, increasing vulnerability to bacterial infection and septic mortality.

"Without the experimental model of peritonitis perfected by John Mathison from Scripps Research, we would not have been able to differentiate between the two mouse phenotypes," Ulevitch said. "Because of his work, we were able to use a surgically implanted stent in the colon that allowed a gradual occurrence of sepsis and easy identification."

A majority of mice with caspace-12 died from sepsis within the first 48 hours after onset, while 60 percent of the caspase-12 deficient mice survived. The deficient mice also showed a significantly lower number of bacterial colony-forming units per milliliter of blood, suggesting that more efficient bacterial clearance occurs in the absence of caspase-12.

Caspase-12 is also an inhibitor of caspase-1, a related enzyme involved in the inflammation process. Caspase-1 deficient mice are two-to-three times more susceptible to lethal Escherichia coli infection than normal mice. Consequently, the study said, sepsis resistance in caspase-12 deficient mice was most likely due to an initial hyper-production of cytokines that fight the infection.

"The resulting beneficial effect of cytokine hyper-production runs contrary to some of the current thinking in sepsis research," Ulevitch said. "The general thinking is that this initial cytokine ’storm’ is harmful, and that belief has been the basis of a number of unsuccessful clinical studies. In our study, cells containing caspase-12 appear to weaken the activity of caspase-1 that is normally essential for bacterial clearance and sepsis survival."

In another finding, researchers showed that both mouse models had similar levels of stress-induced apoptosis or programmed cell death. While caspase-12 was previously thought to be a key mediator of endoplasmic reticulum apoptosis, the new study found that the presence or absence of caspase-12 had no effect on apoptotic sensitivity whatsoever.

Others authors of the study include Maya Saleh (currently with McGill University), Melissa K. Wolinski, Steve J. Bensinger, Patrick Fitzgerald, Nathalie Droin, Douglas R. Green (La Jolla Institute of Allergy and Immunology and St. Jude Children’s Research Hospital); Donald W. Nicholson of Merck Research Laboratories, and; John C. Mathison of Scripps Research.

Keith McKeown | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>